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ABSTRACT 

Under ideal analysis settings, the measurement of emission from laser-induced plasma offers a unique capacity for quantifying 

the major and minor elements present in any kind of sample. Chemometric techniques are extremely efficient and trustworthy 

tools for determining the quantities of several components in complicated matrices. For the investigation of environmental 

reference materials, the viability of laser-induced breakdown spectroscopy (LIBS) in conjunction with multivariate analysis 

(RMs) was examined. Several (Certified/Standard) References Materials of plant and soil origin were examined using LIBS in 

the current work, and the presence of Al, Ca, Mg, Fe, K, Mn, and Si was detected in the LIBS spectra of these materials. Using 

the LIBS spectral data, partial least square regression and partial least square discriminant analysis were used as multivariate 

statistical techniques for the quantitative study of the constituent elements. To verify the accuracy of the calibration models, the 

concentrations of the various components in test samples were predicted using the calibration models, and the predicted 

concentrations were then compared to the certified concentrations. The results of two RMs by LIBS were also compared using 

the non-destructive analytical technique known as Instrumental Neutron Activation Analysis (INAA), which makes use of 

high-flux reactor neutrons and high-resolution gamma-ray spectroscopy. 
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I. INTRODUCTION 
 

To validate an analytical method, certified/standard reference materials (CRMs/SRMs) analysis is necessary. CRMs 

can be used to assess the technique's and methodology's correctness, boosting confidence when the same methodology is 

applied to unidentified samples. Since CRMs for many matrices in numerous laboratories are not readily available, it is vital to 

use appropriate procedures to assess the accuracy of analytical methods. The analytical approaches are crucial for identifying 

crucial components in a range of materials that are crucial for a direct investigation of materials in a variety of circumstances. 

For the compositional analysis, a variety of analytical methods have been thoroughly investigated, including Inductively 

Coupled Plasma Emission Spectrometry (ICPAES), Inductively Coupled Plasma Mass Spectrometry (ICP-MS), X-ray 

Fluorescence (XRF), Instrumental Neutron Activation Analysis (INAA), etc. These procedures function excellently 

analytically, but the most of them are destructive because a sizable portion of the samples are used. Additionally, the 

procedures for sample preparation take a lot of time. On the other hand, nondestructive nuclear analytical methods, such as 

INAA and IBA, are capable of determining many elements. However, in order to do routine material analysis, INAA requires a 

high flux research reactor, while IBA requires a tandem particle accelerator. 

A multielement analytical method based on emission spectroscopy called laser induced breakdown spectroscopy 

(LIBS) is used to collect data on multiple elements at once. Compared to more traditional methods that call for pretreatment, 

this technique may have some advantages. The emission spectroscopy method requires small, minimally intrusive experimental 

equipment and does not require sample pretreatment. Through the use of appropriate experimental setups, it can also deliver 

remote in-situ analysis in hostile contexts or on inaccessible targets. 

This technique involves focusing a strong laser pulse on the sample surface, which causes a plasma plume to form, 

dissociating all molecules and tiny particles inside the extremely intense microplasma. A complete elemental fingerprint of the 

material under analysis can be obtained from the LIBS spectra and the associated plasma emission, which can be connected to 

the elemental content of the sample surface. You can evaluate the method's accuracy by analyzing proper matrix matching 

certified reference materials. To do a quantitative analysis, standards that are similar to the matrix of the unknown (test) sample 

must be prepared, and a calibration curve for each element must be obtained. 

While the spectral information in LIBS spectra often consists of hundreds of data points that may be gathered in less 

than a second, they are frequently quite complicated and include considerable information. It is never possible to compare the 

analytical results for elements using every potential emission line for that element in such a chemically complicated matrix for 
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complex spectra, such as those of soils and plants. So, a good plan is needed to deal with these problems and make sure that 

valuable spectral data doesn't get lost. 

A well-known chemometric analytical technique called multivariate analysis (MVA) makes full use of the LIBS 

spectral data while accounting for all potential variables and eliminating redundant and associated ones. Numerous studies 

have used MVA on LIBS to take advantage of the wealth of spectra data from the sample's elemental compositions. To adjust 

the data points for various deviations, multivariate approaches such as partial least square regression (PLSR) and partial least 

square discriminant analysis (PLSDA) are helpful. These techniques can be used to forecast the concentrations of various 

elements in unidentified samples and are linked with LIBS to generate the calibration models. LIBS are more promising for the 

qualitative and quantitative analysis of different elements in a variety of samples as a result of the creation and optimization of 

numerous strong statistical analytical methods. In this study, the chemometric analysis was carried out using PLSR and 

PLSDA, and LIBS spectra of environmental samples (plant and soil RMs) were produced. When using the higher neutron flux 

irradiation position of the Dhruva Research reactor, the results of IAEA RM SL-1 and NIST SRM 1632a were compared with 

the results obtained from INAA. These techniques' estimated concentrations for test samples are compared to their certified 

values. 

 

II. RESOURCES AND TECHNIQUES 
 

2.1. Setup of the Experiment 

To record the LIBS spectra, pellets of each sample and RM were created using a hydraulic press machine (H-Br Press 

MODEL M-15).One gram of each sample was added to a pellet die (20 mm in diameter and 3 mm high) to create the pellets, 

which were then compressed under six tons of pressure for one minute. With a maximum deliverable laser energy of 425 mJ 

per pulse, a frequency-doubled Q-switched pulsed Nd:YAG (continuum Surelite III-10) laser source was employed. The pulse 

width FWHM (full width at half maximum) was 4 ns (variable repetition rate 1 e-10 Hz). The surface of the sample was 

targeted by a 532 nm laser beam that was focused using a converging lens (f/14, 15 cm). The laser pulse energy and pulse 

repetition rate were tuned, and the best signal-to-background ratio was found at an energy of 20 mJ at a repetition rate of 4 Hz 

(measured with an energy meter, Genetec-e model UP19K-30 H-VM-DO). Calculated by [D 14 4LF/pd], where l is the 

wavelength, f is the lens's focal length, and d is the aperture, or unfocused (initial) beam diameter, the focal point for a laser 

beam with a diameter of 9 mm is around 11 mm. 

The power density of the laser beam flux is 5.24 1012 Wcm2 (laser pulse with energy of 20 mJ and pulse width of 4 

ns).First, a lens (diameter 5 mm, f/2) fixed to the end of an optical fiber bundle was used to collect the emission from plasma. 

This lens was positioned at around 45 degrees to the laser beam to best collect the emission signal. The other end of the optical 

fiber was at the Czernye-Turner (CeZ) spectrometer's entry slit (Ocean Optics LIBS 2000; fixed gate delay: 1.5 ms). A 

spectrometer consists of four parts. The fourth module, which covers the spectral range 200–900 nm, has a low resolution of 

0.75 nm, while the first three modules, covering the 200–510 nm range, have a high resolution of 0.1 nm (FWHM). The spectra 

were obtained using a gated charge-coupled device (CCD) paired with a spectrometer that has 14,336 pixels as a detector. 

All of the samples in the experiment were analyzed using the optimized experimental parameters. Three soil samples 

and two plant samples, totaling five environmental samples, have been examined in this work. To improve the signal-to-noise 

ratio, an average of 20 laser shots was recorded. To eliminate statistical inaccuracy caused by laser shot-to-shot fluctuations 

and to take into account sample heterogeneity, seven spectra of each sample are recorded. The resulting spectra were examined 

with the aid of the program OOI LIBS 2000. 

In addition to a reference standard of approximately 10 mg, powder samples (RMs) were sealed in polythene pouches 

and exposed to radiation for one minute in the Dhruva reactor's pneumatic carrier facility (PCF), located at BARC's Trombay 

facility in Mumbai. This radiation made it easier to extract samples of Al, Ca, K, and Mn. To determine Fe concentration, a 

different set of samples weighing 100 mg each were exposed to radiation for one day in the tray rod facility of the Dhruva 

reactor. Using a 30% relative efficiency HPGe detector, samples were checked for gamma activity after being exposed to 

radiation. Peak-fit software called PHAST was used to identify the peak areas, and the standard relative technique was used to 

calculate concentrations. 

 

2.2 Statistical Analysis 

For statistical comparison, the LIBS spectra of diverse materials were organized into a matrix with multiple variables 

(spectral emission lines corresponding to different wavelengths). This LIBS spectral data matrix was utilized to run the 

multivariate procedures using the Unscrambler-X program (CAMO Software India Pvt. Ltd.). Data sets were then separated 

into two matrices, one for plant samples (14 5855) and the other for soil samples (21 5855), as we have two different types of 

samples (plants and soils). For both matrices, multivariate approaches are utilized. The most popular multivariate 

methodologies for data analysis are PLSDA and PLSR. These methods are based on the partial least squares (PLS) method, 
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which is frequently used for large-scale data analysis. PLS is used to lower the calibration model's residuals in order to 

efficiently employ the spectral data, decrease the risk of overfitting, and ultimately increase the model's accuracy. 

In its simplest form, PLS is a method for simulating a linear connection between variables used as inputs and outputs. The 

primary drawback of using the PLS technique to analyze spectral data is that it ignores any underlying physical concepts in 

favor of concentrating solely on the mathematical connections in the data. The data decomposition technique known as PLSR 

uses a mathematical process to create latent variables (factors). A large number of correlated independent variables are 

orthogonally transformed into a smaller number of uncorrelated independent variables using latent variables. PLSR can 

understand the correlations between many variables and identify hidden trends. When independent variables include shared 

information, such as correlations, PLSR works particularly well since it linearly links the fluctuations of the dependent 

variables to the independent variables. It makes it easier to understand how independent variables and dependent variables are 

related. A set of unknown samples are then used to validate the PLSR model's performance. The PLSR calibration model is 

used to generate the PLSDA model in this case. Classes of unknown samples can be predicted using this technique. It 

establishes the ideal variance for each class. 

Comparisons of the PLSDA model's effectiveness are made using validation test sets. This work's major goal is to 

build reliable calibration models that relate the concentration of various elements in a range of samples and to use those models 

to forecast the concentrations of those elements in unidentified samples. The use of MVA in extracting and evaluating the 

spectrum information will unquestionably improve the quantitative analytical capability of LIBS, making it more promising.  

 

III. RESULTS AND ANALYSIS 
 

   The sample descriptions used by LIBS for the multivariate analysis are displayed in Table 1. The typical LIBS 

spectrum of a cabbage leaf CRM is shown in Fig. 1 and spans the spectral range of 200 nm to 500 nm. This spectrum clearly 

demonstrates the presence of Mg, Ca, Fe, K, Al, Si, and other notable lines. All other examined standard RMs have similar Mg, 

Ca, Fe, K, Al, Mn, etc. spectral lines in their LIBS spectra. Using the NIST database for atomic spectroscopy and chemical 

spectroscopy developed by W. R. Brode, the wavelengths of various atomic and ionic species found in the spectra were 

determined. Tables 2 show the certified values of the concentrations of different elements in both plant and soil RMs. 
In this case, the calibration model for RMs is built using PLSR. These are the predicted vs. reference charts for the 

PLSR model. The typical wavelength regions that comprise the majority of the emission lines of the relevant elements are 

selected for each sample in order to develop the calibration models of various elements with variable concentrations. Typical 

Al PLSR calibration models for plant and soil samples are shown in Figs. 2(a) and (b). All other elements are plotted using 

PLSR models in a similar manner. The model's performance is 

 

Table 1: List of the various analysis-related references. 

S. No. RM code Matrix Sample code 

1   NCSZC73012  Cabbage leaf                      P1  
2  NCSZC73014  Tea Leaf  P2  
3  SRM 2704  River Sediment  S1                     
4  SRM 1632                      a Bituminous Coal  S2  
5  RM SL-1  Buffalo River Sediment  S3  

 

 

 

 

 

  

Figure 1: Cabbage leaf LIBS spectra in the 200- to 500-nm range 
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Table 2: Certified concentrations (weight percentages) of several elements for soil CRMs with anticipated concentrations of 

unidentified soil samples 

Element  SRM 2704 

(S1)  

 SRM 1632a 

(S2)  

 IAEA-RM-

SL-1 (S3) 

 

 Certified  Predicted  Certified*  Predicted  Certified**  Predicted 

Al        6.11 ± 0.16 6.14 ± 0.26  (3.1)  2.9 ± 0.20  (8.9)  9.02 ± 0.50 

Ca  2.60 ± 0.03  2.36 ± 0.16  0.23 ± 0.03  0.29 ± 0.11  (0.25)  0.26 ± 0.01 

Fe  4.11 ± 0.10  3.74 ± 0.39  1.11 ± 0.02  1.45 ± 0.40  6.74 ± 0.20  6.75 ± 0.75 

K  2.00 ± 0.04 1.93 ± 0.15  0.42 ± 0.02  0.33 ± 0.18  (1.5)  1.87 ± 0.30 

Mg  1.20 ± 0.02  1.10 ± 0.11  (0.1)  0.12 ± 0.02  (2.9)  2.82 ± 0.22 

Mn  0.0555 ± 

0.0019  

0.0307 ± 0.0127  0.0028 ± 0.0002  0.0029 ± 0.0001  0.346 ± 0.017  0.339 ± 0.031 

 

By using the coefficient of determination and the root mean square error to measure (R2). The R2 values are seen to 

be virtually equal to 1, while the RMSE is seen to be very close to zero, indicating a significant correlation between the 

predictions and references. The reference values and the anticipated values have to match perfectly. This model can be 

considered adequate for use in the regression if the slopes tend to 1. Seven spectra from each of the two plant samples make up 

the 14 spectra we recorded. Ten of the 14 spectra are selected as the training set for the PLSR model, while the remaining four 

are selected as the test set. Three soil samples totaling 21 spectra (7 spectra for each sample) are acquired. Out of the total of 21 

spectra, 15 are selected as the training (known) set, and the remaining 6 are the test (unknown) set. The PLS model is validated 

using the cross-validation technique. Test sets provide information about the model's strengths and weaknesses. To build the 

PLSR model, we used the concentrations of various elements listed in Tables 1 and 2. Furthermore, the close agreement 

between the calibration's (Cal) and validation's (Val) best fits (blue and red, respectively) demonstrates that the R2 for 

calibration (Cal) is near to the validation's (Val). The model cannot be believed if Cal and Val have significant differences. For 

all elements in both matrices, the model's root-mean-square error of calibration and prediction (RMSEC&P) is near 0. The 

PLSR calibration model is assessed using RMSEC for the model, and test sets are forecasted using these calibration models. 

These PLSR calibration models' predictive abilities are checked using RMSEP. If the matrix of the measured samples does not 

deviate from that of the calibration sample set, we can assess the correctness of the determination based on the predictions from 

a PLS model. The RMSE is low while R2 remains high, demonstrating the proposed model's general resilience and indicating 

that the PLSR model is more accurate and reliable for all samples (Fig. 2(a) and (b). This method can fix the problems with 

traditional internal standard calibration techniques and compensate for matrix effects.  

The three-dimensional scatter plot of the three specified components for both types of samples is displayed in Fig. 3 

The closer the samples are to one another on the score plot, the more similar they are, giving us a map of the samples. In the 

first matrix, samples are separated into two groups, and in the second matrix, they are divided into three clusters. Although they 

are grouped independently, it is clear that the majority of the elements are the same across all samples in both matrices. 

Interestingly, this demonstrates the 

 

 

 

 

 

 

 

 

Figure 2: (a & b). Al concentration prediction vs. reference plots for plant and soil RMs 
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Figure 3: Plant and soil CRMs assess plots in three dimensions. 
 

As can be observed from the concentration information in Tables 1 and 2 of samples, there is a difference in the 

concentration of the elements contained in the samples. By computing the factors, these graphs (Fig. 3) provide information on 

trends in samples. 

The peaks in Fig. 4 are utilized to create the PLS calibration models and have a significant impact on the variance of 

Mg concentrations. The regression coefficients show a direct linear link between the elemental concentrations and the LIBS 

spectra. The peaks that have been allocated here display the emission lines that are pertinent to variations in elemental 

concentrations. A restricted spectral range is chosen to generate the PLS models, where the most intense peaks of a given 

element are exhibited based on the regression coefficient plot. This reduces the interference of irrelevant emission lines and 

makes the PLS models practically feasible. 

The relationship between the cumulative explained variance and the number of components is seen in Fig. 5. This 

variance curve shows the evolution of the explained variance of a certain variable. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Shows a plot of the regression coefficient versus wavelength for the Mg element in soil samples. 
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Figure 5: Shows the PLSR model's explained variance plot. 

 

With the model's multiplicity of factors. According to this graph, only two variables are required to produce a 

calibration model with the highest level of predictability. From this figure, we can determine the variation in responses that 

each component requires to produce a calibration model with the highest level of predictability. From this figure, we can 

determine the variation in the responses that each component describes. The calibration variance is shown by the blue line, 

while the validation variance is represented by the red line. The basis for calculating calibration variance is fitting the 

calibration data to the model that was created from the calibration data. The model is put to the test on the data to calculate the 

validation variance. The model does not adequately represent fresh data if the validation variance differs from or is much 

smaller than the calibration variance. On the other hand, the model is representative if these curves are close together. The plot 

shows that the calibration variance and validation variance are very similar. 

As a result of the PLSR model's reliability, it is used to forecast the concentrations of test samples. Figures 6 (a) and 

(b) show the Al test set results for plant and soil samples, respectively. These models are also plotted similarly for all other 

components. The expected concentrations for all test (unknown) samples are displayed in these figures. Here, test sets are 

utilized to calculate the concentrations of various elements before evaluating the efficacy of the calibration model. Horizontal 

lines represent the anticipated values, while the boxes surrounding the values represent departures from 

 

 
Figure 6: (a & b), PLSDA models for the Al test set for samples of soil and plants 
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the data training set is depicted in Figures 6(a) and (b).Boxes show the high variance if the calibration model's training sets and 

the test sets on which the predictions are applied are not very similar. The estimated concentrations of all elements with RSD 

for plant and soil samples are displayed in Tables 2 and 3, respectively. Here, it should be noted that, with only minor 

differences in values, the anticipated concentration values of several elements for unidentified samples are almost identical to 

the certified concentrations shown in Tables 2 and 3. The fact that unknown samples are remarkably similar to known samples 

demonstrates the proposed model's robustness for unknown samples. 

The range of 3.0–9.5% applies to the data from four separate samples that INAA evaluated. As can be observed, the 

INAA results for the IAEA RM SL-1 and NIST SRM 1632a are in good agreement with the certified values as well as with 

respect to each other (within 10% except for a few elements of 1632a) (within 3.3% for SL-1 and within 10% for 1632a). A 

high-flux neutron source, such as a nuclear reactor, is required for the experiments since INAA is capable of delivering data on 

numerous elements with widely different concentration ranges simultaneously. LIBS is useful because it lets scientists get 

information without damaging the object being studied.  
 

IV. CONCLUSION 
 

The potential of LIBS to analyze RMs of environmental samples quickly using multivariate statistical analysis of data 

is examined in this work. Authenticated reference materials were used to construct the model for the multivariate analysis. The 

created model was then used on unidentified samples. The findings unequivocally show that PLSR and PLSDA are effective 

tools for applying multivariate techniques to the analysis of LIBS spectral data. Here, calibration models for relating the 

concentrations of various elements are constructed. The LIBS-predicted concentrations for the RMs are similar to the certified 

concentrations. The usual calibration curve method makes it very difficult to determine the element concentrations in a range 

of samples. This methodology offers a workable solution. Even in the absence of RMs for the same matrix, the methodology is 

useful for assessing how resilient the strategy is. These strategies produce better outcomes because multivariate methods have 

robust and potent analytical capabilities. 

 

REFERENCES 
 

1. N.S. Rajurkar, & M.M. Damame. (1997). Elemental analysis of some herbal plants using in the treatment of 

cardiovascular diseases by NAA and AAS. J. Radio Anal. Nucl. Chem., 77e80. 

2. C.G. Ryan. (2000). Quantitative trace element imaging using PIXE and the nuclear microscope. Int. J. Imaging Syst. 

Technol. 11, 219e230. 

3. Jie Wang, Tetsuya Nakazato, Kinya Sakanishi, Osamu Yamada, Hiroaki Tao, & Ikuo Saito. (2004). Microwave 

digestion with HNO3/H2O2 mixture at high temperatures for determination of trace elements in coal by ICP-OES and 

ICP-MS. Anal. Chim. Acta, 514(2004), 115e124. 

4. N. Civici, Sh. Gjongecaj, F. Stamati, T. Dilo, E. Pavlidou, E.K. Polychroniadis, & Z. Smit. (2007). Compositional 

study of IIIrd century BC silver coins from Kreshpan hoard (Albania) using EDXRF spectrometry. Nucl. Instrum. 

Methods Phys. Res., B 258, 414e420. 

5. Sarah C. Jantzi, & Jose R. Almirall. (2011). Characterization and forensic analysis of soil samples using laser-induced 

breakdown spectroscopy (LIBS). Anal. Bioanal. Chem., 400, 3341e3351. 

6. Gulab Singh Maurya, Aradhana Jyotsana, Rohit Kumar, Ajai Kumar, & A.K. Rai. (2014). Analysis of deposited 

impurity material on the surface of the optical window of the Tokamak using LIBS. Phys. Scr., 89, 75601. 

7. Rohit Kumar, Awadhesh K. Rai, Devanathan Alamelu, & Suresh K. Aggarwal. (2013). Monitoring of toxic elements 

present in sludge of industrial waste using CFLIBS. Environ. Monit. Assess., 185, 171e180. 

8. Gabriel Gustinelli Arantes de Carvalho, Javier Moros, Dario Santos Jr., Francisco Jose Krug, & J. Javier Laserna. 

(2015). Direct determination of the nutrient profile in plant materials by femtosecond laser-induced breakdown 

spectroscopy. Anal. Chim. Acta, 876, 26e38. 

9. Jennifer L. Gottfried, Russell S. Harmon Jr., Frank C. De Lucia, & Andrzej W. Miziolek.(2009). Multivariate analysis 

of laser-induced breakdown spectroscopy chemical signatures for geomaterial classification. Spectrochim Acta Part B, 

64, 1009e1019. 

10. K. Ayyalasomayajula, Vivek Dikshit, Fang Yu Yueh, Jagdish P. Singh, & Laura T. Smith. (2011). Quantitative 

analysis of slurry sample by laser-induced breakdown spectroscopy. Anal. Bioanal. Chem., 400, 3315e3322. 

11. Jie Feng, Zhe Wang, Logan West, Zheng Li, & Weidou Ni. (2011). A PLS model based on dominant factor for coal 

analysis using laser-induced breakdown spectroscopy. Anal. Bioanal. Chem., 400, 3261e3271. 

 


