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I. INTRODUCTION 
 

The point cloud format, consisting of a set of 3D points, has garnered significant attention due to its wide applications 

in areas such as autonomous driving [18] and reverse engineering [40]. Despite its simplicity, the sparse and dis- ordered 

nature of point clouds presents challenges for traditional convolutional neural networks. Specifically, there are three main 

issues: (1) the permutation invariance of points must be maintained to preserve the geometric structure, (2) models must exhibit 

robustness to large geometric transformations and deformations [35], and (3) suitable connection graphs are essential for 

effective feature extraction, capturing local geometric structures and symmetric relationships. Significant progress has been 

made in point cloud analysis. PointNet [19] introduced shared multi-layer perceptrons and symmetric functions (e.g., 

point-wise max- pooling) to ensure permutation invariance. However, Point- Net struggles to model local geometric structures. 

To address this, subsequent works [20, 22, 23] introduced grouping operations (e.g., k-nearest neighbor or ball region groups) 

to create local connections for hierarchical feature extraction. Despite their success, these methods, based on Euclidean 

coordinates, fail to capture long-range dependencies, limiting global context extraction. 

Dynamic Graph CNN (DGCNN) [30] improved upon this by dynamically updating the connection graph based on 

features. However, each layer still operates on a single graph, limiting the captured geometric features. More- over, the back-

propagation method cannot guide the net- work to construct optimal connection graphs, as neighbor selection in feature space 

is non-differentiable. GS-Net [35] addressed this by building connections in both Euclidean and Eigenvalue spaces, leveraging 

local and non-local dependencies. However, it still lacks the ability to implicitly construct connection graphs, limiting its 

ability to fully capture latent dependencies like symmetry and collinearity (see Figure 1). 

To address these limitations, we propose the Multi-Space Graph Convolutional Network (PointGCNN), which 

employs reinforcement learning to adaptively construct connection graphs in multiple latent spaces, capturing both local and 

non-local dependencies. Initially, local geometric structures are encoded in Euclidean and Eigenvalue spaces and combined as 

low-level features. Hierarchical convolution layers then dynamically construct multiple connection graphs, guiding feature 
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propagation. The assorted connections capture diverse dependencies, enhancing complex scene recognition and robustness 

against perturbations. Experimental results demonstrate PointGCNN’s state-of-the- art performance on major point cloud 

benchmarks. 

Our main contributions are three-fold: 

 We design a Multi-Space Convolution kernel based on bootstrap [4] and policy gradient [26], which adap- tively 

explores latent space connections to capture global features. 

 We integrate the bootstrap method into deep learning, enabling our model to capture diverse dependencies. 

 Our PointGCNN achieves state-of-the-art performance on ModelNet40 and ScanObjectNN datasets, demon- strating 

its effectiveness, efficiency, and robustness. 

 

II. RELATED WORK 
 

In our comprehensive survey of point cloud analysis, we categorize the research into three main approaches: local 

feature-based methods, non-local feature-based methods, and methods that do not primarily focus on features. 

Local feature-based methods [19, 20, 23, 37, 22, 12, 9, 30, 14, 13, 41, 31, 10, 27, 36, 3, 35, 38 ,57 ,58] often begin with 

PointNet [19], which addresses the sparse nature and permutation invariance of point clouds using shared MLP and max-

pooling. However, PointNet’s independent handling of each point can result in the loss of local geo- metric structures. To 

mitigate this, PointNet++ [20] introduces local connections in Euclidean space for hierarchical feature encoding. Following 

this, numerous studies [30, 41, 14, 46, 47] have enhanced local information extraction methods. For example, DGCNN [30] 

links local neighbors with the center point to exploit edge relationships, while PointCNN [12] employs an X-transformation to 

per- mute and weight the point set. GACNet [29] uses attention mechanisms to address feature isotropy, PointWeb [41] densely 

connects local points to find interactions, Point- Conv [31] combines MLP with kernel density estimation for convolution 

kernel construction, and Geo-CNN [10] de- composes edge feature extraction onto multiple orthogonal bases to model local 

geometric structures explicitly. De- spite these advances, these methods often fail to capture non-local information among 

distant points [3]. 

To extract non-local features, Point2Node [3] explores multi-level correlations, including self, local, and non-local 

correlations, though dense connections can overwhelm important information and increase computational overhead. GS-Net 

[35] constructs local connection graphs in both Euclidean and Eigenvalue spaces to leverage holistic con- text features. While 

this approach benefits from explicit eigenvalue-based connections, it still lacks the ability to adaptively build connection 

graphs in an end-to-end manner, overlooking other dependencies. 

Additionally, some works explore non-feature-based approaches. For example, 3DmFV [39] represents points by their 

deviation from a Gaussian Mixture Model, capturing more details than grids. PointASNL [38] introduces attention mechanisms 

to reduce noise. Other significant contributions include [8, 11, 34, 1, 42, 33, 17]. 

 

III. METHODOLOGY 
 

Our neural architecture is depicted in Figure A point cloud is represented as a set.  

 

 
 

Figure 1: Neighbors from different latent spaces (A real-world Ex- ample on ModelNet40). (Best viewed in color and zoom 

in) 
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The purple point is the anchor point. Different colored clusters indicate the neighbors of the anchor point in various 

spaces, serving as examples to extract different local/global features. The range of neighbors in Euclidean space is circled, with 

dependencies marked along the edges. For example, the green/blue points are local neighbors in Euclidean/Eigenvalue space 

[35], providing local geometric and structural similarity features. The yellow/orange clusters offer symmetric 

property/collinearity features relative to the anchor point. By bridging local connections in different spaces, various 

dependencies can be captured. 

Where P represents all point coordinates, pi denotes the 3D coordinate of the i-th point, and N is the total number of 

points. 

Initially, we encode low-level local features in two prior spaces (Euclidean and Eigenvalue spaces [35]) using the 

Prior Space Encoding Module (PSEM). The model then stacks Multi-Space Convolution (MSConv) layers to hierarchically 

propagate and gather features across diverse graphs. High-level representations are generated using point-wise shared multi-

layer perceptrons (MLP). Finally, both low-level and high-level features are utilized for down- stream tasks. 

The architecture consists of four main parts (Figure ??): 

1. Prior Space Processing. The Eigen-Graph [35] calculates eigenvalue features we concatenate these eigenvalue features with 

the Euclidean coordinates and use T-Net [19] to align the point cloud in Euclidean space. This results in adjusted 3D 

coordinates   
 

 
2. High-level Dependency Extraction. We propose MSConv layers to extract and fuse multiple geometric features. Each layer 

uses policy gradients [26] to select weighted input feature channels, inspired by bootstrap  

 

 
Figure 2: Visualization of the local connections in different spaces (Best viewed in color and zoom in) 

 

We visualize the local neighbors of the same anchor point (a.k.a., the original point) in different spaces. Each point is 

colored based on its distance from the anchor point in the specific space, with shorter distances shown in darker colors. 

 
Table 3: Overall accuracy(%) on the ScanObjectNN benchmark. This comparison includes only supervised models trained 

exclusively on ScanObjectNN. 
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Method Model 

Size(M) 

Forward 

Time(ms) 

Accuracy 

(%) 

PointNet[19] 13.4 30 89.2 

PointNet++[20] 7.0 603 91.9 

DGCNN[30] 7.2 73 92.2 

GS-Net[35] 6.0 126 92.9 

PointGCNN 

(ours) 

20.8 36 93.7 

Table 4: Efficiency analysis of PointGCNN in classification. 

 

 
Table 5: Ablation Study for PointGCNN. “k” represents the number of neighbors in each space. “S” indicates the number of 

latent spaces. “Channel Weight” means the latent spaces are weighted feature spaces rather than raw feature subsets. “Voting” 

denotes the use of the voting technique 

 

Performance Comparison. Results on ScanObjectNN  [28] show the effectiveness of our model in point cloud understanding. 

PointGCNN achieves significant improve- ments on PB T50 RS (3.0%) and OBJECT ONLY (1.4%), demonstrating its 

robustness to large geometric transfor- mations through inherent dependencies like symmetry and connectivity. 

1.1 ShapeNet: Point Cloud Part Segmentation 

Dataset and Metric. The ShapeNet Part dataset [2] con- sists of 16, 880 models from 16 categories and 50 parts. 

There are 14, 006 models for training and 2, 874 for test- ing. We concatenate a one-hot category vector to the last 

point representation and use mean IoU (mIoU) to evaluate segmentation performance. 

Performance Comparison. While our PointGCNN is designed for global dependencies rather than discriminative local 

features, it still achieves comparable results (85.2%) in segmentation tasks. 

1.2 Ablation Study 

Table 5 shows the effectiveness of learned latent spaces and hyper-parameter impacts. Generated latent space 

connections provide significant improvements (0.8%), indicating the presence of latent semantic dependencies. Visualization 

of distance figures (Figure 2) illustrates these dependencies. 

1.3 Efficiency Analysis 

We evaluate time efficiency on the ModelNet40 [32] dataset, comparing forward propagation speed. All codes are 

based on PyTorch [16], and ”forward time” represents the mean time to process a batch of 8 samples on a sin- gle GTX1080 

GPU. Our PointGCNN, designed for parallel computing, achieves the best performance with minimal time. [4], creating 

multiple latent spaces for each sample. Features are propagated along these connections, and a fully connected layer transforms 

outputs into final layer features. 

3. Downstream Task Docking. For point classification, we concatenate low-level (PSEM output) and high- level features 

(MSConv outputs). A fully connected layer and two pooling layers (max and mean) produce global representations. An MLP 

with dropout [25] evaluates category distribution. For segmentation, a fully connected layer concatenates multi-level features 

for each point, and an MLP with dropout performs point-wise segmentation.  

 

IV. CONCLUSION 
 

To analyze point clouds more comprehensively, we pro- pose a novel neural architecture, PointGCNN, inspired by 

Prior Space Encoding Module (PSEM). The PSEM extracts local geometric features from Euclidean and Eigenvalue spaces, 

producing a N 64 low- level feature matrix from the input N 3 Euclidean coordinate matrix and N 3 eigenvalue feature matrix.  
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Formally, given adjusted spatial coordinates and bootstrap and optimized by policy gradient. PointGCNN adaptively 

organizes latent spaces to capture hidden distant dependencies. These rich dependencies enhance robust- ness and enable the 

model to achieve state-of-the-art performance on benchmark datasets. 
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