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I. INTRODUCTION 
 

Nonalcoholic fatty liver disease (NAFLD) is a major global health challenge with its prevalence ranging between 

20% to 35% worldwide. Approximately one-third of NAFLD patients may develop nonalcoholic steatohepatitis (NASH), 

a condition associated with severe complications such as cirrhosis, hepatocellular carcinoma, and higher liver-related 

mortality [1]. Even without NASH or advanced fibrosis, individuals with NAFLD often linked with rising rates of obesity 

and metabolic syndrome, face an elevated risk of overall mortality compared to the general population [2-4]. However, a 

substantial portion of NAFLD patients remain undiagnosed. Liver biopsy is the gold standard for diagnosis of NAFLD 

and NASH, but the procedure is expensive and has increased risk of complications. Given the multifactorial and intricate 
etiology of the disease, it's still difficult to determine a specific prevention strategy and achieve early identification of 

high-risk groups to reduce the prevalence of the disease. Therefore, improved prediction of the risk of NAFLD may be of 

great value in the prevention and control of the disease in the general population. 

In recent years, advancements in artificial intelligence (AI) have opened new frontiers in healthcare, offering 

innovative solutions to longstanding challenges [5, 6]. Large Language Models (LLMs), such as ChatGPT-3.5 and 

ChatGPT-4, represent a significant leap in this direction. ( https://openai.com/blog/chatgpt). These models have shown 

exceptional capabilities in generating human-like text, and their potential application in medical diagnostics and risk 

prediction is a subject of considerable interest. Although LLMs have demonstrated impressive capabilities, attempts to 

assess the clinical knowledge of models typically rely on automated evaluations based on limited benchmarks. Limited 

quantitative evaluation of their performance and accuracy has been conducted in specific medical tasks [7]. 

The potential of Large Language Models (LLMs) in managing Nonalcoholic Fatty Liver Disease (NAFLD) goes 

well beyond diagnosis. These models are adept at analyzing complex data to uncover subtle patterns and risk factors that 
traditional methods may miss. This is crucial for NAFLD, where disease progression varies widely among individuals. By 

using LLMs, we could more accurately predict how the disease will progress, allowing for more personalized and effective 

treatments, ultimately improving patient outcomes. Additionally, LLMs could significantly enhance patient education and 

engagement by providing clear and relatable advice, encouraging better lifestyle choices that are key to managing 

NAFLD. Furthermore, the flexibility of Large Language Models (LLMs) extends to their ability to process various types 

of inputs, including both textual case descriptions and medical images. This versatility makes LLMs even more accessible 

and user-friendly for healthcare professionals and patients. 

However, the application of LLMs in NAFLD isn't without its challenges. The inherent variability in their 

responses, a result of their probabilistic design, poses questions about their reliability and accuracy in a clinical setting. 

 
 

ABSTRACT 

Nonalcoholic fatty liver disease (NAFLD) has become a global epidemic. The coexistence of NAFLD and type 2 diabetes 

mellitus (T2DM) is common, and their interaction significantly heightens the risk of adverse clinical outcomes. Despite 

advancements in medicine, diagnosing NAFLD remains a critical challenge. Large language models (LLMs) have shown 

exceptional capabilities in various medical applications. However, their potential in diagnosing NAFLD has yet to be fully 

explored. 
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This is a significant concern for NAFLD, where understanding the nuances of a patient's history and lifestyle is essential 

for proper diagnosis and treatment. Thus, there's a critical need for thorough testing and validation of LLMs in both 

clinical trials and real-world scenarios to confirm their effectiveness and safety in treating NAFLD. Moreover, as LLMs 

become a more common tool in healthcare, we must ensure they are used ethically and transparently, avoiding biases, 

especially since NAFLD affects diverse (sub)groups e.g, DM or non-DM, differently. 

As of now, no research has evaluated ChatGPT's accuracy and comprehensiveness when addressing questions 

specific to NAFLD. Thus, our study aims to explore the feasibility of using LLMs for early detection of NAFLD and 

compared their performance with that of conventional models, such as the Fatty Liver Index (FLI) and the (USFLI). We 

further explored GPT-4V's potential in clinical diagnosis using Ultrasound images. 

 

II. METHODS 
 

Study Population 

The National Health and Nutrition Examination Survey (NHANES) is a comprehensive cross-sectional research 

program conducted by the Centers for Disease Control (CDC) and Prevention of the USA whose purpose is to evaluate 

the health status in the U.S. population after survey weighting by using interview, examination, dietary and laboratory 
data. The original survey protocol was approved by the Institutional Review Board of the National Center of Health 

Statistics. All participants signed informed consent forms. The current study was deemed exempt by the Institutional Review 

Board of our center. 

Data for this research were sourced from the NHANES 2017-2018, with a total of 9,254 participants. The 

current research employed the controlled attenuation parameter (CAP) for NAFLD diagnosis. Exclusion criteria included: 

1) age <20 years, 2) without complete components on FLI, USFLI and FIB-4 calculation, 3) lack of baseline median 

stiffness, median CAP or with incomplete elastography exam status, pregnancy, 5) excessive alcohol consumption 

(alcohol consumption >20g/day for males and 10g/day for females), 6) other existed liver conditions, including viral  

hepatitis infection (defined as a positive HCV RNA, HCV-antibody or HBsAg test), autoimmune hepatitis and liver 

cancer, and 7) missing follow-up information. Ultimately, 1,542 participants were included in the final analysis. (Figure 1) 

Definition of NAFLD, Fibrosis, Comorbidities and Index Calculation. 

NHANES 2017-2018 employed vibration controlled transient elastography (VCTE) to assess liver fibrosis by 
measuring liver stiffness and quantifying liver fat through the controlled attenuation parameter (CAP). The device 

calculated the median liver stiffness measurement (LSM) and CAP along with the interquartile range (IQR). Exams were 

considered complete if performed in fasted state (>3h) with ≥10 LSM, and a stiffness IQR/median <30% [8] 

Fatty liver disease (FLD) was defined as having a median CAP score of 285 dB/m for detecting hepatic fibrosis [9]. 

The definition of NAFLD was FLD without other causes of chronic liver disease or excessive alcohol consumption 

(alcohol consumption <20 g/day for males and 10g/d for females). Significant fibrosis and advanced fibrosis were 

defined as LSM ≥ 8.0 kPa and ≥ 13.1 kPa, respectively. 

Moreover, the study also employed FLI and USFLI for identifying individuals with FLD, while FIB-4 was 

utilized to stratify the risk of advanced fibrosis among FLD. FLI and USFLI are identified as the foremost validated 

diagnostic panels for the identification and comprehensive assessment of NAFLD among the array of validated diagnostic 

tools available. The FLI score was computed using parameters including triglycerides, BMI, GGT and waist 
circumference, whereas the USFLI formula encompassed age, ethnicity, GGT, waist circumference, fasting glucose and 

fasting insulin. The FIB-4 index, well-validated and widely employed in clinical settings, was utilized to identify participants 

with advanced fibrosis [10, 11]. 

FLI and USFLI were calculated using the following formula as previously described: 

 
Individuals were defined as FLD if their FLI score ≥ 60 or USFLI score ≥ 30. Advanced fibrosis was assessed by 

serological non-invasive fibrosis index (FIB-4), calculated using the following formula: 

FIB-4 = (age*AST) / (Platelet counts * (SQRT(ALT))) 

Participants with FIB-4 > 2.67 were regarded as high-risk for advanced fibrosis. Individuals meeting one or more 
of the following criteria were considered to have diabetes: 1) fasting plasma glucose ≥  7.0mmol/L or 2-h oral glucose 

tolerance test level of ≥ 11.1mmol/L; 3) HbA1c ≥6.5%; 4) use of diabetes medication or insulin; and 4) self-reported 

doctor diagnosis of diabetes. Cardiovascular disease was defined by self-reported medical history of congestive heart failure, 

coronary artery disease, heart attack or stroke. 
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Age, sex, race, BMI, waist circumference, hip circumference, weight, pulse, blood pressure, CAP, LSM, 

smoking status, drinking status and medical conditions were adopted from demographic and health questionnaires and 

physical examination of the NHANES survey. Race was classified as non-Hispanic Black, non-Hispanic White, Mexican 

American, other Hispanic and other races. BMI was calculated as weight in kilograms divided by height (m) squared. 

Smoking status was categorized as never a smoker (defined as smoking less than 100 cigarettes in life), former smoker 

(smoking more than 100 cigarettes but smoking not at all now) and current smoker (smoking more than 100 cigarettes and 

smoking some days or every day now). The drinking status was categorized as either abstinent or consuming alcohol. 

Waist-to-hip ratio was calculated as waist circumstance divided by hip circumstance. Fasting plasma glucose, HbA1c, 2-h 

oral glucose tolerance test, serum insulin, total cholesterol, triglycerides, high density lipoprotein, low density lipoprotein, 

total protein, red blood cell counts, white blood cell counts, monocytes counts, platelet counts, hemoglobin,  high-sensitive 
C-reactive protein, total bilirubin, albumin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-

glutamyltransferase (GGT), alkaline phosphatase, serum uric acid, serum creatinine and urine albumin-creatinine ratio 

were obtained from laboratory test results. The triglyceride-glucose index is calculated by the formula: Ln [TG (mg/dl) × 

glucose (mg/dl)/2]. 

The Prediction of NAFLD Estimate by LLMs (GPT-3·5/GPT-4) 

To predict the risk of NAFLD and its associated, we utilized Large Language Models (LLMs) i.e., ChatGPT-3.5 

and GPT-4. Before feeding data into these models, we transformed variables into sentences, as shown in Figure X. This 

transformation aligns with the language-based nature of LLMs, allowing us to receive outputs as individual risk 

percentages instead of broad text descriptions. Moreover, we included each participant's details, such as age, gender, 

diabetes status, hypertension, smoking habits, and other variables. Regular expressions were used to extract probabilities 

related to NAFLD. We also explored the clinical relevance of GPT's probability estimations. To process large volumes of 
data efficiently, we used the ChatGPT API (GPT-3.5-turbo and GPT-4 as of November 2023) in a Python environment. 

Furthermore, we present two cases with referenced NAFLD diagnosis with ultrasound images, sourced from The First 

Affiliated Hospital of Hebei North University employing GPT-4 Version (GPT-4V) to examine the proficiency in medical 

diagnosis. Both patients signed informed consent forms. GPT-4V, since its introduction in September, 2023, has garnered 

significant interest due to its capability to process multimodal inputs. For each case, we provided GPT-4V with a prompt 

to generate a comprehensive clinical report based on ultrasound images of the liver, gallbladder,  spleen, pancreas, and 

portal vein, including details of any lesions observed. The generated reports by GPT-4V were then meticulously analyzed 

to identify clinically relevant information. Key findings and notable excerpts from these AI-generated clinical reports 

are highlighted and discussed in Figure 3. This exploration serves not only to assess the current capabilities of GPT-4V in 

interpreting complex medical imaging but also aims to shed light on the potential of AI-assisted diagnostics in the field of 

radiology and hepatology. 

Comprehensive Evaluation of LLM 
A thorough evaluation of LLM for gastroenterological decision support was conducted in the current study, 

utilizing a dataset of 100 patient cases. Four experienced gastroenterologists with 5 to 15 years of clinical experience 

assessed the performance of LLM across five dimensions: accuracy, clinical relevance, overall utility, explainability and 

consistency. They systematically reviewed patients’ profiles and reference results, assigning scores to GPT-3.5 and GPT-4.0 

on a scale of 1 to 5. A score of 5 denoted alignment with clinical references, 3 indicated the presence of irrelevant content, 

and 1 signified incorrect suggestion. Additionally, our evaluation was expanded to encompass direct feedback from 20 

patients, including ratings based on symptom description accuracy, cost of care, and time efficiency on a scale of 1 to 3 (poor, 

acceptable and great) associated with the treatment process. 

 

III. STATISTICAL ANALYSIS 
 

All statistical analyses were performed in R (version4.2.1) software (“survey” packages in R account for the 

complex survey design were used) and Python's SciPy library (version 1.12.0). Sampling weights were considered during 

analysis. Continuous variables and categorical variables were described as weighted means (95% confidence interval, CI) 

and frequency counts (percentages), respectively. The comparison among groups were evaluated utilizing one-way 

ANOVA, and the Pearson chi-square test for categorical variables. Receiver-operator characteristic curve (ROC) analysis 

was conducted to compare the accuracy of FLI, USFLI, GPT-3.5 and GPT-4.0 for NAFLD prediction. Furthermore, the 

relationship between different scoring systems were assessed by plotting scatterplots and calculating Pearson’s 
correlation coefficient. 
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IV. RESULTS 
 

In total, 1,542 participants were enrolled in the present study (detailed inclusion was shown in Figure 1). Over a 

median follow-up of 23.78(13.00, 35.00) months, 23 (1.30%) patients experienced all-cause mortality, with 2 (0.37%) 

deaths attributed to cardiovascular causes. 

Characteristics of the Study Population 

Of the study cohort, 586 individuals were identified as NAFLD. Notably, participants with NAFLD tended to be 

male and older. In comparison to patients without NAFLD, those with NAFLD exhibited a higher prevalence of 

cardiovascular disease and diabetes and had a higher possibility of obesity, including elevated BMI, waist-to-hip ratio. 

Additionally, NAFLD patients demonstrated elevated levels of hepatic inflammatory markers, including AST, ALT, 

GGT, WBC, monocytes and hs-CRP. Other laboratory indices such as FPG, HbA1c, serum insulin, TyG, TRIG, RBC,  

hemoglobin, PLT, ALP, serum uric acid and UACR showed significant elevations in NAFLD patients, while HDL and 

ALB were relatively lower. 

Comparison of Risk Scores and LLM on NAFLD Diagnosis 

The performance comparison of FLI, USFLI, GPT-3.5 and GPT-4.0 in NAFLD diagnosis were demonstrated in 

Table 2. The study employed CAP measured by VCTE for final NAFLD diagnosis, while we also utilized scoring systems 
mentioned above to assess whether participants in NHANES were NAFLD or not. As depicted in Table 2, the FLI score had 

the highest F1-score of 0.66 (95% CI 0.63-0.69), with a sensitivity of 0.66 (95%CI 0.62-0.70) and specificity of 0.79 

(95%CI 0.77-0.82), while GPT-3.5 showed the lowest F1-score, and its sensitivity and specificity were 

0.56 (95%CI 0.44-0.58), 0.75 (95%CI 0.78-0.87), respectively. Furthermore, the four methods exhibited varying AUC 

values, ranging from 70.7% to 83.1%. Notably, specific AUC values of GPT-3.5, GPT-4.0, FLI and USFLI were 70.7%, 

83.1%3, 81.7%, 82.7%, respectively (Figure 3). In combination of AUC, F1-score, sensitivity and specificity, the GPT-

4.0score demonstrated superior performance in NAFLD diagnosis. 

In our subgroup analysis focusing on the impact of Diabetes Mellitus (DM) on NAFLD diagnosis, we observed 

significant differences in performance between models in populations with and without DM. GPT-4.0 displayed notable 

adaptability, with an AUROC of 0.825 (95% CI 0.784-0.866) in non-DM individuals and a decrease to 0.749 (95% CI 

0.621-0.878) in those with DM, yet it showed a remarkable increase in sensitivity from 0.502 to 0.840. Conversely, GPT-

3.5's performance dropped more sharply in the DM group, from an AUROC of 0.707 (95% CI 0.655- 0.758) in non-DM 
to 0.538 (95% CI 0.359-0.717), indicating a more significant impact of DM on its diagnostic capability. The FLI and 

USFLI indices also showed variability with DM presence, but the contrast in performance between GPT-3.5 and GPT-4.0 

across DM and non-DM groups underscores the importance of considering DM as a factor in NAFLD diagnostic models. 

GPT-4.0's ability to maintain higher specificity and achieve a substantial sensitivity boost in DM patients highlights its  

potential for clinical application in diverse patient populations. This analysis underscores the critical need for model 

adaptation to patient subgroups, especially in conditions like DM that markedly influence NAFLD diagnosis. 

Correlation Analysis for Different Scoring Systems 

To evaluate the correlations among varied scoring systems, Pearson correlation analysis was performed (Figure 

X). In the current analysis, the Pearson correlation coefficient demonstrated a significant association between the GPT-4.0 

score and the FLI, with the highest Pearson’s r value of 0.71 (P < 0.001). Furthermore, the correlation between GPT-3.5 

and GPT-4.0 was determined to be 0.61, representing the lowest among all analyzed relationships. Moreover, the 
Pearson’s r value between GPT-4.0 and USFLI, as well as FLI and USFLI was 0.71 and 0.64, respectively, indicating a 

robust and moderate correlation. 

Physician-led Comprehensive Evaluation of LLM (GPT-4.0 and GPT-3.5) in NAFLD Diagnosis 

Four gastroenterologists assessed the performance of GPT-4.0 and GPT-3.5 for NAFLD diagnosis in diverse 

dimensions through the evaluation of 100cases randomly selected in this study cohort. The assessment revealed that GPT-

4.0 achieved higher scores in accuracy (4.75 vs. 4.0), clinical relevance (4.50 vs. 3.92), overall utility (4.25 vs. 3.75), 

explainability (4.25 vs. 3.25), and consistency (4.35 vs. 3.65) in comparison to the performance of GPT-3.5. Additionally, 

this study compared the performance of GPT-3.5, GPT-4.0 and real-world clinical scenarios based on patient feedback, 

including symptom description accuracy, cost of care, and time efficiency (Figure XC). The scores of symptom 

description accuracy exhibited a notable increase from GPT-3.5 (1.8) to GPT-4.0 (2.6), approaching to the clinical 

reference (2.75). Regarding cost of care ratings, high scores were consistently observed among all evaluated entities, where 

GPT-3.5 received a rating of 2.7, and both GPT-4.0 and the clinical reference achieved a score of 2.8. However, discernible 
variability in time efficiency was evident, with GPT-4.0 (2.9) displaying enhanced performance compared to GPT-3.5 

(1.6). 

Comparison between GPT-4V and Radiologist for Liver Ultrasound Analysis 

To evaluate the imaging diagnostic efficacy of GPT-4V in medical applications, this study compared the analysis 

of liver ultrasound conducted by GPT-4V and a radiologist for two cases diagnosed with NAFLD (Figure X). The 
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findings of the comparative analysis demonstrated that the GPT-4V proficiently identified normal liver parenchyma 

echotexture and recognized the unremarkable features in the portal vein and common bile duct. Additionally, it effectively 

detected abnormalities, including an enlarged gallbladder, wall irregularities and the presence of strong echoes with 

posterior acoustic shadowing. However, GPT-4V failed to accurately quantify precise parameters, such as wall thickness 

and the enhancement of hepatic parenchymal echogenicity. Therefore, for hepatic ultrasound imaging of NAFLD patients 

previously diagnosed by an experienced radiologist, GPT-4V exhibited limitations in the identification and diagnosis of 

NAFLD. 

 

V. DISCUSSION 
 

This study compared the performance of LLMs in NAFLD and fibrosis progression  prediction with that of FLI as 

well as USFLI and validated the output using real-word data. The findings of this study are as follows. GPT-4 achieved 

performance comparable to the FLI in NAFLD prediction in the NHANES cohort {Specificity (0.853 vs 0.794) and F1 

score (0.637 vs 0.660)}and USFLI {Specificity (0.853 vs 0.917) and F1 score (0.637 vs 0.580)}. 

Since its release, ChatGPT has attracted considerable attention worldwide because of its exceptional ability to 

generate plausible responses across various topics. In some cases, ChatGPT has outperformed existing prediction models, 
encouraging studies on the potential of ChatGPT for use in various applications [14]. For instance, ChatGPT has showed 

potential in various medical applications such as answering United States Medical Licensing Exam (USMLE) questions 

[15], answering ophthalmology queries [16], and generating simplified radiology reports for patients [17]. However, 

limited studies have been conducted on the use of language models for early detection of NAFLD. To the best of our 

knowledge, this study is the first to reveal that ChatGPT exhibited performance comparable with the conventional risk 

score model in predicting non-alcoholic fatty liver disease using large real-world medical data. These findings provide 

insights into the potential applicability of ChatGPT in medical practice. 

Our methodological approach compared the performance of LLMs with both FLI and USFLI for NAFLD 

diagnosis and the FIB-4 index for advanced fibrosis assessment, contributed to the accuracy and reliability of our 

diagnostic framework of LLMs. We revealed that GPT-4.0 displayed moderate accuracy in the primary diagnosis, 

indicating its potential usefulness as an adjunct for clinical diagnosis. ChatGPT could generate potential diagnoses based on 

patient symptoms, medical history, and laboratory test results [18]. Additionally, the results suggested a potential 
refinement in GPT-4.0’s comprehension and processing of medical information compared to GPT-3.5. GPT-4.0 

manifests profound grasp of input context, consequently enhancing the accuracy of the generated text. In terms of the output 

process, GPT-4.0 provided disease diagnoses accompanied by comprehensive explanations. And GPT-4.0 generally 

answered quicker than GPT-3.5, possibly due to the hardware enhancements and algorithmic improvements [19]. 

Type 2 diabetes and impaired glucose tolerance are important risk factors for the development of NAFLD and 

NASH [20, 21]. A larger 2018 meta-analysis of nearly 300,000 individuals from 19 studies indicated that individuals with 

NAFLD have a greater than 2-fold increased risk for developing incident T2DM [22]. Considering the higher prevalence of 

NAFLD in patients with T2DM, we also investigated the difference of NAFLD diagnosis among individuals with T2DM 

and non-T2DM in the same cohort. Our research illustrated attenuated specificity among all models but  higher sensitivity 

in T2DM individuals compared to non-T2DM. This might suggest the potential shared risk factors among NAFLD and 

T2DM. To be noted, GPT-4.0 demonstrated the highest sensitivity (0.840) and F1 score (0.808) in T2DM group 
compared to general population and non-T2DM group. Despite the high coexistence of NAFLD and T2DM and increased 

risk of cardiovascular sequela among these individuals, evidence does not currently support screening for NASH or 

NAFLD in patients with T2DM. In its 2017 practice guideline, the American Association for the Study of Liver Diseases 

did not recommend routine NAFLD screening for high-risk patients in primary care, diabetes, or obesity clinics [23]. 

Given the current understanding of the pathophysiological interplay between insulin resistance in both T2DM and 

NAFLD. 

We also investigated the feasibility of using a large language model LLM, specifically GPT-4V, to extract structured 

data from unstructured pathology reports in a zero-shot approach. The results of our experiments suggest that GPT-4 can 

be used effectively to extract relevant information from histopathological reports with high accuracy. This capability holds 

potential to reduce the workload of human experts while preparing ground truth data for machine learning applications. 

This study has also evaluated the performance of LLMs such as GPT by asking experts to use a rating scale for 

assessment. While this method does not account for the concordance among experts, it also introduces the possibility of 
bias, especially if the experts are aware of the responses provided by the LLMs. It is vital to note that GPT-4’s responses, 

especially in complex cases like this study, can vary, impacting reproducibility [24]. Thus, only the program’s first 

response was evaluated. It should also be noted that generative models can ‘hallucinate’ findings [25]. In our experiments, 

we provided GPT-4 with an explicit prompt and asked it to align responses with a clearly defined template, which might be 

less prone to hallucinations than ‘open’ questions. 
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Our study contributes to the ongoing discourse on the role of artificial intelligence in healthcare, particularly in the 

realm of medical diagnostics and risk stratification. The utilization of Large Language Models like ChatGPT-3.5 and 

ChatGPT-4, forms the backdrop of our exploration into innovative approaches for enhancing risk assessment tools. The 

potential of these models to aid in diagnosing NAFLD and predicting advanced fibrosis remains a subject of considerable 

interest, warranting further exploration and validation in future studies. 

Finally, this study has a few limitations. First, the unavailability of API for GPT-4 and Bard limited our analysis to a 

subset of 9,254 participants. However, this result was sufficient to validate the findings of this study. Second, the inner 

workings of GPT-4 remain challenging because the model and the code of ChatGPT have not been fully disclosed, and 

because of the complex structure of LLM, fully explaining the working principle becomes difficult. Third, the performance 

of GPT-4 is yet to be extensively validated for various medical conditions, necessitating additional research to generalize 
our findings to other conditions such as diabetes or cancer. Studies are required to optimize the performance of GPT-4 

through finetuning and prompt engineering of specific tasks. To fully confirm its effectiveness and practicality in real-

world NAFLD diagnosis, further in-depth investigation and rigorous clinical. 

 

VI. CONCLUSION 
 

In this study, we validated the predictive performance of LLM in a prospective hospital-based cohort. The 

application of LLM-that incorporates various patient-level risk factors for NAFLD, such as smoking history, treatment, 

and laboratory factors- showed high discrimination (AUC of 0.831) as well as good calibration and risk stratification 

ability. Our research contributes to the evolving understanding of NAFLD's impact on diabetes, emphasizing the need for 

personalized risk assessment tools. The integration of advanced diagnostic calculations and consideration of glycemic 

status and fibrosis risk provide a more comprehensive evaluation of NAFLD severity and associated risks. As the field 

progresses, the application of AI models holds promise for refining risk prediction, necessitating further exploration and 

validation in diverse clinical settings. These findings underscore the imperative for continued research into innovative 

approaches to enhance patient care in the face of the growing NAFLD epidemic. 

 

Figure1: The patient selection process 
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Figure 2: Example of a ChatGPT prompt and response for risk stratification 

 

 
 

Figure 3: Example of a ChatGPT-4(V) prompt and response for risk stratification 
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Figure 4: AUROC curve 

 

 
Figure 5: Scatterplots and Pearson correlation coefficient for various scoring methods 
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Model AUROC Brier Sensitivity Specificity F1 Score 

 

GPT-4.0 

0.831 

(0.796, 

0.867) 

0.167 

(0.151, 

0.183) 

0.576 

(0.506, 

0.646) 

0.853 

(0.812, 

0.893) 

0.637 

(0.578, 

0.696) 

GPT-3.5 0.707 

(0.687, 
0.727) 

0.233 

(0.213, 
0.253) 

0.556 

(0.536, 
0.576) 

0.746 

(0.726, 
0.766) 

0.571 

(0.551, 
0.591) 

FLI>=60 0.817 

(0.797, 

0.837) 

0.17 

(0.160, 

0.180) 

0.66 

(0.622, 

0.697) 

0.794 

(0.768, 

0.820) 

0.66 

(0.628, 

0.692) 

USFLI>=30 0.827 

(0.807, 

0.848) 

0.172 

(0.162,0.182) 

0.464 

(0.426, 

0.503) 

0.917 

(0.899, 

0.934) 

0.58 

(0.544, 

0.616) 

GPT-4.0  
w/o DM 

0.825 

(0.784, 

0.866) 

0.165 

(0.147, 

0.182) 

0.502 

(0.415, 

0.588) 

0.875 

(0.835, 

0.916) 

0.576 

(0.498, 

0.654) 

GPT-3.5 

w/o DM 

0.707 

(0.655, 

0.758) 

0.226 

(0.198, 

0.255) 

0.524 

(0.444, 

0.604) 

0.758 

(0.706, 

0.809) 

0.536 

(0.466, 

0.607) 

FLI w/o 

DM 

0.817 

(0.794, 
0.839) 

0.164 

(0.153, 
0.174) 

0.638 

(0.592, 
0.685) 

0.803 

(0.778, 
0.829) 

0.628 

(0.589, 
0.666) 

USFLI w/o 

DM 

0.816 

(0.793, 

0.840) 

0.168 

(0.157, 

0.178) 

0.408 

(0.360, 

0.455) 

0.929 

(0.913, 

0.946) 

0.524 

(0.479, 

0.570) 

GPT-4.0 

with DM 

0.749 

(0.621, 

0.878) 

0.185 

(0.144, 

0.226) 

0.84 

(0.732, 

0.947) 

0.518 

(0.286, 

0.750) 

0.808 

(0.714, 

0.901) 

GPT-3.5 

with DM 

0.538 

(0.359, 

0.717) 

0.289 

(0.212, 

0.366) 

0.659 

(0.500, 

0.818) 

0.524 

(0.286, 

0.762) 

0.682 

(0.559, 

0.805) 

FLI with 

DM 

0.748 

(0.675, 

0.822) 

0.209 

(0.179, 

0.239) 

0.734 

(0.662, 

0.806) 

0.628 

(0.500, 

0.755) 

0.771 

(0.712, 

0.829) 

USFL I 

with 

DM 

0.758 

(0.680, 

0.837) 

0.2 

(0.169, 

0.232) 

0.647 

(0.569, 

0.725) 

0.734 

(0.623, 

0.845) 

0.735 

(0.672, 

0.798) 
 

Table 1: Performance comparison of USFLI, FLI, and ChatGPT Risk Score 
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