Preparation of Microwave Induced Ce4+ Substitution Properties of Chemically Substituted Zinc Ferrite Nanocrystals


  • Dr. Arjun Bhosle Visiting Faculty, Department of Chemistry, Shrikrishna College, Gunjoti, India



microwave, substitution properties, chemical, zinc, nanocrystal


Sol-gel auto combustion was used to create cerium doped Ni-Cr-Fe spinel ferrite nanoparticles. The cubic spinel structure with co-existence of the CeO2 and Fe2O3 phases is revealed by the XRD patterns of the samples sintered at 600 0C. When Ce4+ ions are added to nickel ferrites, the average lattice constant increases from 8.244 to 8.354 as the crystallite size increases. The well-defined and primarily spherical-shaped grains on the samples' surfaces are visible in SEM micrographs. All of the materials' infrared spectra were captured at room temperature in the 300–800 cm-1 range. The infrared spectra of the current samples also exhibit two major absorption bands, which is a characteristic of spinel ferrites. As the cerium content of Ni-Cr ferrite rises, saturation magnetization (MS) and remnant magnetization (Mr) decline.


Download data is not yet available.


H. Gul, & E. Pervaiz. (2012). Comparative study of NiFe2-xAlxO4 ferrite nanoparticles synthesized by chemical co-precipitation and sol–gel combustion techniques. Materials Research Bulletin, 47, 1353-1361.

A. V. Raut, R. S. Barkule, D. R. Shengule, & K. M. Jadhav, (2014). Synthesis, structural investigation and magnetic properties of Zn2þ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique. J. Magn. Magn. Mater., 358, 87-92.

S. Chakrabarty, M. Pal, & A. Dutta. (2015). Structural, optical and electrical properties of chemically derived nickel substituted zinc ferrite nanocrystals. Materials Chem. and Phy., 153, 221-228

A. M. M. Farea, S. Kumar, & K. M. Batoo. (2008). Mössbauer studies of Co0.5CdxFe2.5−xO4 (0.0⩽x⩽0.5) ferrite. Physica B: Condensed Matter, 403(19-20), 3604-3607.

H. Gul, A. Z. Abbasi, F. Amin, M. Anis-ur-Rehman, & A. Maqsood. (2007). Structural, magnetic and electrical properties of Co1-xZnxFe2O4 synthesized by co-precipitation method. J. Magn. Magn. Mater., 311, 494–499.

H. W. Wang, & S. C. Kung. (2004). Crystallization of nanosized Ni–Zn ferrite powders prepared by hydrothermal method. J. Magn. Magn. Mater., 270(1-2), 230-236.

A. K. Singh, A. Verma, O. P. Thakur, C. Prakash, T. C. Goel, & R. G. Mendiratta. (2003). Electrical and magnetic properties of Mn–Ni–Zn ferrites processed by citrate precursor method. Mater. Lett., 57(5-6), 1040-1044.

M. Wahba, & M. B. Mohamed. (2014). Magnetic, and dielectric properties of nanocrystalline Cr-substituted Co0.8Ni0.2Fe2O4 ferrite, Ceram. Inter., 40(04), 6127-6135.

X. Duan, D. Yuan, Z. Sun, C. Luan, D. Pan, D. Xu, & M. Lv. (2005). Preparation of Co2+ doped ZnAl2O4 nanoparticles by citrate sol–gel method, J. Alloys Compd., 386(1-2), 311-314.

Baykal, N. Kasapoğlu, Y. Köseoğlu, A. C. Başaran, H. Kavas, & M. S. Toprak. (2008). Microwave-induced combustion synthesis and characterization of NixCo1-xFe2O4 nanocrystals (x¼ 0.0, 0.4,0.6,0.8,1.0). Cent. Eur.J. Chem., 6, 125-130.

M. H. Yousefi, S. Manouchehri, A. Arab, M. Mozaffari, Gh. R. Amiri, & J. Amighian. (2010). Preparation of cobalt–zinc ferrite (Co0.8Zn0.2Fe2O4) nano- powder via combustion method and investigation of its magnetic properties. Mater. Res. Bull., 45(12), 1792-1795.

G. R. Holcomb, & D. E. Alman. (2006). The effect of manganese addition on the reactive evaporation in Ni-Cr alloys. Scripta Materialia, 54(10), 1821-1825.

S. E. Shirsath, S. S. Jadhav, B. G. Toksha, S. M. Patange, & K. M. Jadhav. (2011). Influence of Ce4+ ions on the structural and magnetic properties of NiFe2O4, J. Appl. Phys., 110(01), 013914-18.

S. T. Assar, & H. F. Abosheiasha. (2012). Structure and magnetic properties of Co-Ni-Li ferrite synthesized by citrate precursor method. J. Magn. Magn. Mater., 324(22), 3846-3852.

G. Mustafa, M. U. Islam, W. Zhang, Y. Jamil, M. A. Iqbal, M. Hussain, & M. Ahmed. (2015). Temperature dependent structural and magnetic properties of Cerium substituted Co–Cr ferrite prepared by auto-combustion method. J. Magn. Magn. Mater., 378(15), 409-416.

E. Pervaiz, & I. H. Gul. (2013). Low temperature synthesis and enhanced electrical properties of substitution of Al3+ and Cr3+ in Co-Ni nano ferrites. J. Magn. Magn. Mater., 343, 194-202.

Vivek Choudhari, R. H. Kadam, M. L. Mane, S. E. Shirsath, A. B. Kadam, & D. R. Mane. (2014). Effect of La3+ impurity on magnetic and electrical properties of Co-Cu-Cr-Fe nanoparticles, J. Nanosci. Nanotch., 15(06), 4268-75.

R. D. Waldron. (1955). Infrared spectra of ferrites, Phys. Rev., 99(06), 1727-1735.

E. C. Stoner, & E. P. Wohlfarth. (1991). A mechanism of magnetic hysteresis in heterogeneous alloys, IEEE Trans. Magn., 27(04), 3475-3518.

S. H. Liou, S. Hunag, E. Kilmerk, & R. D. Kriby. (1999). Enhancement of coercivity in nanometer – size CoPt crystallites. J. Appl. Phys., 85(08), 4334-4336.



How to Cite

Dr. Arjun Bhosle. (2023). Preparation of Microwave Induced Ce4+ Substitution Properties of Chemically Substituted Zinc Ferrite Nanocrystals. Applied Science and Biotechnology Journal for Advanced Research, 2(5), 9–13.