Preparation of Microwave Induced Ce4+ Substitution Properties of Chemically Substituted Zinc Ferrite Nanocrystals
DOI:
https://doi.org/10.31033/abjar.2.5.3Keywords:
microwave, substitution properties, chemical, zinc, nanocrystalAbstract
Sol-gel auto combustion was used to create cerium doped Ni-Cr-Fe spinel ferrite nanoparticles. The cubic spinel structure with co-existence of the CeO2 and Fe2O3 phases is revealed by the XRD patterns of the samples sintered at 600 0C. When Ce4+ ions are added to nickel ferrites, the average lattice constant increases from 8.244 to 8.354 as the crystallite size increases. The well-defined and primarily spherical-shaped grains on the samples' surfaces are visible in SEM micrographs. All of the materials' infrared spectra were captured at room temperature in the 300–800 cm-1 range. The infrared spectra of the current samples also exhibit two major absorption bands, which is a characteristic of spinel ferrites. As the cerium content of Ni-Cr ferrite rises, saturation magnetization (MS) and remnant magnetization (Mr) decline.
Downloads
References
H. Gul, & E. Pervaiz. (2012). Comparative study of NiFe2-xAlxO4 ferrite nanoparticles synthesized by chemical co-precipitation and sol–gel combustion techniques. Materials Research Bulletin, 47, 1353-1361.
A. V. Raut, R. S. Barkule, D. R. Shengule, & K. M. Jadhav, (2014). Synthesis, structural investigation and magnetic properties of Zn2þ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique. J. Magn. Magn. Mater., 358, 87-92.
S. Chakrabarty, M. Pal, & A. Dutta. (2015). Structural, optical and electrical properties of chemically derived nickel substituted zinc ferrite nanocrystals. Materials Chem. and Phy., 153, 221-228
A. M. M. Farea, S. Kumar, & K. M. Batoo. (2008). Mössbauer studies of Co0.5CdxFe2.5−xO4 (0.0⩽x⩽0.5) ferrite. Physica B: Condensed Matter, 403(19-20), 3604-3607.
H. Gul, A. Z. Abbasi, F. Amin, M. Anis-ur-Rehman, & A. Maqsood. (2007). Structural, magnetic and electrical properties of Co1-xZnxFe2O4 synthesized by co-precipitation method. J. Magn. Magn. Mater., 311, 494–499.
H. W. Wang, & S. C. Kung. (2004). Crystallization of nanosized Ni–Zn ferrite powders prepared by hydrothermal method. J. Magn. Magn. Mater., 270(1-2), 230-236.
A. K. Singh, A. Verma, O. P. Thakur, C. Prakash, T. C. Goel, & R. G. Mendiratta. (2003). Electrical and magnetic properties of Mn–Ni–Zn ferrites processed by citrate precursor method. Mater. Lett., 57(5-6), 1040-1044.
M. Wahba, & M. B. Mohamed. (2014). Magnetic, and dielectric properties of nanocrystalline Cr-substituted Co0.8Ni0.2Fe2O4 ferrite, Ceram. Inter., 40(04), 6127-6135.
X. Duan, D. Yuan, Z. Sun, C. Luan, D. Pan, D. Xu, & M. Lv. (2005). Preparation of Co2+ doped ZnAl2O4 nanoparticles by citrate sol–gel method, J. Alloys Compd., 386(1-2), 311-314.
Baykal, N. Kasapoğlu, Y. Köseoğlu, A. C. Başaran, H. Kavas, & M. S. Toprak. (2008). Microwave-induced combustion synthesis and characterization of NixCo1-xFe2O4 nanocrystals (x¼ 0.0, 0.4,0.6,0.8,1.0). Cent. Eur.J. Chem., 6, 125-130.
M. H. Yousefi, S. Manouchehri, A. Arab, M. Mozaffari, Gh. R. Amiri, & J. Amighian. (2010). Preparation of cobalt–zinc ferrite (Co0.8Zn0.2Fe2O4) nano- powder via combustion method and investigation of its magnetic properties. Mater. Res. Bull., 45(12), 1792-1795.
G. R. Holcomb, & D. E. Alman. (2006). The effect of manganese addition on the reactive evaporation in Ni-Cr alloys. Scripta Materialia, 54(10), 1821-1825.
S. E. Shirsath, S. S. Jadhav, B. G. Toksha, S. M. Patange, & K. M. Jadhav. (2011). Influence of Ce4+ ions on the structural and magnetic properties of NiFe2O4, J. Appl. Phys., 110(01), 013914-18.
S. T. Assar, & H. F. Abosheiasha. (2012). Structure and magnetic properties of Co-Ni-Li ferrite synthesized by citrate precursor method. J. Magn. Magn. Mater., 324(22), 3846-3852.
G. Mustafa, M. U. Islam, W. Zhang, Y. Jamil, M. A. Iqbal, M. Hussain, & M. Ahmed. (2015). Temperature dependent structural and magnetic properties of Cerium substituted Co–Cr ferrite prepared by auto-combustion method. J. Magn. Magn. Mater., 378(15), 409-416.
E. Pervaiz, & I. H. Gul. (2013). Low temperature synthesis and enhanced electrical properties of substitution of Al3+ and Cr3+ in Co-Ni nano ferrites. J. Magn. Magn. Mater., 343, 194-202.
Vivek Choudhari, R. H. Kadam, M. L. Mane, S. E. Shirsath, A. B. Kadam, & D. R. Mane. (2014). Effect of La3+ impurity on magnetic and electrical properties of Co-Cu-Cr-Fe nanoparticles, J. Nanosci. Nanotch., 15(06), 4268-75.
R. D. Waldron. (1955). Infrared spectra of ferrites, Phys. Rev., 99(06), 1727-1735.
E. C. Stoner, & E. P. Wohlfarth. (1991). A mechanism of magnetic hysteresis in heterogeneous alloys, IEEE Trans. Magn., 27(04), 3475-3518.
S. H. Liou, S. Hunag, E. Kilmerk, & R. D. Kriby. (1999). Enhancement of coercivity in nanometer – size CoPt crystallites. J. Appl. Phys., 85(08), 4334-4336.
Downloads
Published
How to Cite
Issue
Section
ARK
License
Copyright (c) 2023 Dr. Arjun Bhosle
This work is licensed under a Creative Commons Attribution 4.0 International License.
Research Articles in 'Applied Science and Biotechnology Journal for Advanced Research' are Open Access articles published under the Creative Commons CC BY License Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/. This license allows you to share – copy and redistribute the material in any medium or format. Adapt – remix, transform, and build upon the material for any purpose, even commercially.