Biological Invasions of Begomoviruses: A Case Study of TYLCV and Bemisia tabaci in Oman

Authors

  • Quazi M. I. Haq Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Oman
  • Fatma H. Alrasbi Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Oman
  • Alzahra A. A. Alnaabi Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Oman
  • Marwa S. M. Alsaadi Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Oman

DOI:

https://doi.org/10.31033/abjar.2.6.1

Keywords:

begomoviridae, monopartite, whitefly, crispr/cas9, transgenic, vegetation

Abstract

This review article provides an in-depth analysis of the biological invasions of begomoviruses, focusing on a prominent case study involving the Tomato Yellow Leaf Curl Virus (TYLCV) and its vector, the whitefly Bemisia tabaci, in the unique agricultural landscape of Oman. Begomoviruses, known for their global impact on crop yields, have become a significant concern in Oman, posing a serious threat to the cultivation of various crops, particularly tomatoes. The review begins by exploring the molecular characteristics and ecological dynamics of TYLCV and Bemisia tabaci, shedding light on the intricate interactions between the virus, the vector, and the host plants. Through a comprehensive analysis of historical data and recent research findings, the article examines the patterns and pathways of invasion, elucidating the factors contributing to the successful establishment and spread of TYLCV in Oman. The impacts of TYLCV invasion on agricultural productivity and crop quality are critically evaluated, providing insights into the specific challenges faced by Omani farmers. Special attention is given to the socio-economic repercussions of TYLCV-induced crop losses, emphasizing the need for adaptive management strategies to mitigate the negative consequences on food security and rural livelihoods.

Furthermore, the review assesses the current state of knowledge regarding the management and control of TYLCV and Bemisia tabaci in Oman. It discusses the successes and limitations of existing strategies, ranging from conventional practices to innovative biotechnological approaches, providing a foundation for future research directions and the development of sustainable management practices in the context of biological invasions of begomoviruses in Oman. Overall, this review contributes to a nuanced understanding of the complex interplay between invasive begomoviruses, their vectors, and local agricultural systems, offering valuable insights for researchers, policymakers, and practitioners engaged in crop protection and biosecurity in Oman and beyond.

Downloads

Download data is not yet available.

References

Legg, J. P., & Fauquet, C. M. (2004). Cassava mosaic geminiviruses in Africa. Plant Molecular Biology, 56(4), 585–599.

Moriones, E., & Navas-Castillo, J. (2000). Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Research, 71(1–2), 123–134.

Brown, J. K. (2007). The Bemisia tabaci complex: genetic and phenotypic variability drives begomovirus spread and virus diversification. Plant Disease, 91(2), 121–130.

Moriones, E., & Navas-Castillo, J. (2008). The rapid evolution of the population of begomoviruses associated with the tomato yellow leaf curl disease after the invasion of a new ecological niche. Virus Research, 138(1–2), 97–107.

Péréfarres, F., Thierry, M., Becker, N., Lefeuvre, P., Reynaud, B., Delatte, H., & Lett, J. M. (2022). Biological invasions of geminiviruses: a case study of TYLCV and Bemisia tabaci in Reunion Island. Viruses, 4(12), 3665-3688.

Ferro, C. G., Zerbini, F. M., Navas-Castillo, J., & Fiallo-Olivé, E. (2021). Revealing the complexity of sleepovers-delta satellite–plant host interactions: expanded natural and experimental helper virus range and effect dependence on virus-host combination. Microorganisms, 9(5), 1018.

Lozano, G., Trenado, H. P., Fiallo-Olivé, E., Chirinos, D., Geraud-Pouey, F., Briddon, R. W., & Navas-Castillo, J. (2019). Characterization of non-coding DNA satellites associated with sweepoviruses (genus Begomovirus, Geminiviridae)–definition of a distinct class of begomovirus-associated satellites. Frontiers in Microbiology, 7, 162.

Hanley-Bowdoin, L., Settlage, S. B., Orozco, B. M., Nagar, S., & Robertson, D. (2019). Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Critical Reviews in Plant Sciences, 18(1), 71-106.

Hanley-Bowdoin, L., Settlage, S. B., Orozco, B. M., Nagar, S., & Robertson, D. (2022). Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Critical Reviews in Biochemistry and Molecular Biology, 35(2), 105-140.

He, Y. Z., Wang, Y. M., Yin, T. Y., Fiallo-Olivé, E., Liu, Y. Q., Hanley-Bowdoin, L., & Wang, X. W. (2020). A plant DNA virus replicates in the salivary glands of its insect vector via the recruitment of host DNA synthesis machinery. Proceedings of the National Academy of Sciences, 117(29), 16928-16937.

Fiallo-Olivé, E., Pan, L. L., Liu, S. S., & Navas-Castillo, J. (2020). Transmission of begomoviruses and other whitefly-borne viruses: Dependence on the vector species. Phytopathology, 110(1), 10-17.

Khan, A. J., Akhtar, S., Al-Matrushi, A. M., Fauquet, C. M., & Briddon, R. W. (2019). Introduction of East African cassava mosaic Zanzibar virus to Oman harks back to “Zanzibar, the capital of Oman”. Virus Genes, 46, 195-198.

Namuddu, A., Seal, S., van Brunschot, S., Malka, O., Kabaalu, R., Morin, S., ... & Colvin, J. (2023). Distribution of Bemisia tabaci in different agroecological regions in Uganda and the threat of vector-borne pandemics into new cassava growing areas. Frontiers in Sustainable Food Systems, 7, 1068109.

Abdullahi, I., Winter, S., Atiri, G. I., & Thottappilly, G. (2019). Molecular characterization of whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) populations infesting cassava. Bulletin of Entomological Research, 93(2), 97-106.

Chaowongdee, S., Malichan, S., Pongpamorn, P., Paemanee, A., & Siriwan, W. (2023). Metabolic profiles of Sri Lankan cassava mosaic virus-infected and healthy cassava (Manihot esculenta Crantz) cultivars with tolerance and susceptibility phenotypes. BMC Plant Biology, 23(1), 1-22.

Kennedy, G. G., Sharpee, W., Jacobson, A. L., Wambugu, M., Mware, B., & Hanley-Bowdoin, L. (2023). Genome segment ratios change during whitefly transmission of two bipartite cassava mosaic begomoviruses. Scientific Reports, 13(1), 10059.

Hu, J., Sun, G., Yang, Y., Jiao, X., Chen, Z., & Zhang, Y. (2023). Pepper previously infested by MED facilitates settling and oviposition by MEAM1 of the Bemisia tabaci species complex. Journal of Pest Science, 96(3), 1019-1034.

Hu, J., Lu, J., Yang, N., Liu, B., Fu, P., Yang, J., ... & Jiao, X. (2023). Avoidance of previously infested cabbage by MEAM1 cryptic species of Bemisia tabaci species complex. Journal of Pest Science, 96(1), 81-92.

Brown, J. K., Paredes-Montero, J. R., & Stocks, I. C. (2023). Reassessment of the Bemisia tabaci cryptic species group—imperative for a taxonomic reassessment. Current Opinion in Insect Science, 101032.

Navas-Castillo, J., Fiallo-Olivé, E. & Sánchez-Campos, S. (2011). Emerging virus diseases transmitted by whiteflies. Ann. Rev. Phytopathol. 49, 219–248.

Shahid, M. S., Paredes-Montero, J. R., Ashfaq, M., Al-Sadi, A. M., & Brown, J. K. (2023). Native and non-native bemisia tabaci nafme haplotypes can be implicated in dispersal of endemic and introduced begomoviruses in Oman. Insects, 14(3), 268.

Venkataravanappa, V., Kodandaram, M. H., Prasanna, H. C., Reddy, M. K., & Reddy, C. L. (2023). Unraveling different begomoviruses, DNA satellites, and cryptic species of Bemisia tabaci and their endosymbionts in vegetable ecosystems. Microbial Pathogenesis, 174, 105892.

Tan, Y., Gong, B., Zhang, Q., Li, C., Weng, J., Zhou, X., & Jin, L. (2023). Diversity of endosymbionts in camellia spiny whitefly, Aleurocanthus camelliae (Hemiptera: Aleyrodidae), estimated by 16S rRNA analysis and their biological implications. Frontiers in Microbiology, 14, 1124386.

Andrianto, E., & Kasai, A. (2023). Taxonomic revision of tribe aleurocanthini takahashi 1954 stat. rev. Using consortium gene analysis (Mito-Nuclear-Primary Endosymbiont) with the first evidence for mitochondrial recombination in whitefly (Hemiptera: Aleyrodidae). Diversity, 15(1), 80.

Mahmood, M. A., Naqvi, R. Z., Siddiqui, H. A., Amin, I., & Mansoor, S. (2023). Current knowledge and implementations of Bemisia tabaci genomic technologies for sustainable control. Journal of Pest Science, 96(2), 427-440.

Milenovic, M., Eickermann, M., Junk, J., & Rapisarda, C. (2023). Life history parameters of Bemisia tabaci MED (Hemiptera: Aleyrodidae) in the present and future climate of central Europe, predicted by physically realistic climatic chamber simulation. Environmental Entomology, 52(3), 502-509.

Ho, P. T., Byun, H. S., Vo, T. T., Lal, A., Jung, Y. J., Kil, E. J., & Lee, S. (2023). Tomato yellow leaf curl virus infection promotes the tolerance against drought stress in Solanum lycopersicum L. Phytoprotection, 103(1), 26-37.

Shahid MS, Briddon RW, & Al-Sadi MA. (2017a). Identification of Mungbean yellow mosaic India virus associated with tomato leaf curl beta satellite infecting Phaseolus vulgaris in Oman. Journal of Phytopathology, 165, 204–211.

Shahid MS, Shafiq M, Ilyas M, Raza A, Al-Sadrani, MN, Al-Sadi MA, & Briddon RW. (2019b). Frequent occurrence of Mungbean yellow mosaic India virus in tomato leaf curl disease affected tomato in Oman. Scientific Report, 9, 1-14 (Article 16634).

Paredes‐Montero, J. R., Rizental, M., Quintela, E. D., Abreu, A. G. D., & Brown, J. K. (2022). Earlier than expected introductions of the Bemisia tabaci B mitotype in Brazil reveal an unprecedented, rapid invasion history. Ecology and Evolution, 12(1), e8557.

Shahid, M. S., Paredes-Montero, J. R., Ashfaq, M., Al-Sadi, A. M., & Brown, J. K. (2023). Native and non-native bemisia tabaci nafme haplotypes can be implicated in dispersal of endemic and introduced begomoviruses in Oman. Insects, 14(3), 268.

Al-Roshdi, M. R., Ammara, U., Khan, J., Al-Sadi, A. M., & Shahid, M. S. (2023). Artificial microRNA-mediated resistance against Oman strain of tomato yellow leaf curl virus. Frontiers in Plant Science, 14, 1164921.

Shahid, M. S. (2023). Characterization of Tomato leaf curl Palampur virus naturally infecting wild melon in Oman. Indian Phytopathology, 76(1), 215-221.

Ahmed, N., Amin, I., & Mansoor, S. (2023). First report of Tomato yellow leaf curl virus and associated Tomato leaf curl beta satellite infecting eggplant (Solanum melongena) in Pakistan. Australasian Plant Disease Notes, 18(1), 1-3.

Verma, N., Garcha, K. S., Sharma, A., Sharma, M., Bhatia, D., Khosa, J. S., ... & Dhatt, A. S. (2023). Identification of a major-effect quantitative trait loci associated with begomovirus resistance in cucurbita moschata. Phytopathology®, PHYTO-07.

Srivastava, A., Pandey, V., Al-Sadi, A., Shahid, M. S., & Gaur, R. K. (2023). An insight into emerging begomoviruses and their satellite complex causing papaya leaf curl disease. Current Genomics, 24(1), 2-17.

Venkataravanappa, V., Kodandaram, M. H., Prasanna, H. C., Reddy, M. K., & Reddy, C. L. (2023). Unraveling different begomoviruses, DNA satellites, and cryptic species of Bemisia tabaci and their endosymbionts in vegetable ecosystems. Microbial Pathogenesis, 174, 105892.

AgrSciEd, J. A. M. S. (2023). Abstracts of the first international conference on plant protection (ICPP). Journal of Agricultural and Marine Sciences [JAMS], 28(2), 55-162.

Ghosh, S., Srinivasan, R., & Ghanim, M. (2023). A C2H2 zinc finger transcription factor of the whitefly Bemisia tabaci interacts with the capsid proteins of begomoviruses and inhibits virus retention. Insect Molecular Biology, 32(3), 240-250.

https://ictv.global/report/chapter/geminiviridae/geminiviridae/begomovirus.

Khan, A. A., Ahmad, S., & Sajjad, A. Impact of pepper leaf curl virus and candidatus phytoplasma asteris in plants.

Iqbal, M. J., Zia-Ur-Rehman, M., Ilyas, M., Hameed, U., Herrmann, H. W., Chingandu, N., ... & Brown, J. K. (2023). Sentinel plot surveillance of cotton leaf curl disease in Pakistan case study at the cultivated cotton-wild host plant interface. Virus Research, 333, 199144.

Ahmed, N., Amin, I., & Mansoor, S. (2023). First report of tomato yellow leaf curl virus and associated tomato leaf curl beta satellite infecting eggplant (Solanum melongena) in Pakistan. Australasian Plant Disease Notes, 18(1), 1-3.

Salari, K., Heydarnejad, J., Massumi, H., Hasanvand, V., & Varsani, A. (2023). Incidence of cotton leaf curl Gezira virus and the associated alpha satellites and beta satellites in crops and ornamental plants in southern Iran. Tropical Plant Pathology, 48(1), 62-72.

Rahman, S. U., Raza, G., Zubair, M., Ahmed, N., Domier, L. L., Jamil, N., ... & Amin, I. (2023). Multiple begomoviruses infecting soybean; a case study in Faisalabad, Pakistan. Biologia, 78(2), 609-620.

Srivastava, A., Pandey, V., Al-Sadi, A., Shahid, M. S., & Gaur, R. K. (2023). An insight into emerging begomoviruses and their satellite complex causing papaya leaf curl disease. Current Genomics, 24(1), 2-17.

Venkataravanappa, V., Kodandaram, M. H., Prasanna, H. C., Reddy, M. K., & Reddy, C. L. (2023). Unraveling different begomoviruses, DNA satellites, and cryptic species of Bemisia tabaci and their endosymbionts in vegetable ecosystems. Microbial Pathogenesis, 174, 105892.

Qureshi MA, Lal A, Nawaz-ul-Rehman MS, Vo TTB, Sanjaya GNPW, Ho PT, Nattanong B, Kil E-J, Jahan SMH, Lee K-Y, Tsai C-W, Dao HT, Hoat TX, Aye T-T, Win NK, Lee J, Kim S-M, & Lee S. (2022). Emergence of Asian endemic begomoviruses as a pandemic threat. Front. Plant Sci. 13, 970941. doi: 10.3389/fpls.2022.970941.

Published

2023-11-30

How to Cite

Quazi M. I. Haq, Fatma H. Alrasbi, Alzahra A. A. Alnaabi, & Marwa S. M. Alsaadi. (2023). Biological Invasions of Begomoviruses: A Case Study of TYLCV and Bemisia tabaci in Oman. Applied Science and Biotechnology Journal for Advanced Research, 2(6), 1–10. https://doi.org/10.31033/abjar.2.6.1