Precision Agriculture 4.0: Integrating Advanced IoT, AI, and Robotics Solutions for Enhanced Yield, Sustainability, and Resource Optimization-Evidence from Agricultural Practices in Syria

Authors

  • Kahtan Abedalrhman Kanzi Business Consultant, Al-Khobar, Saudi Arabia
  • Ammar Alzaydi Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia / Interdeciplinary Research Centre for Biosystems and Machines, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

DOI:

https://doi.org/10.5281/zenodo.15568353

Keywords:

precision agriculture 4.0, internet of things, artificial intelligence, robotics, sustainable agriculture, resource optimization, syria

Abstract

This study investigates the transformative role of Precision Agriculture 4.0 (PA 4.0) in modernizing agricultural systems, with a specific focus on Syria’s unique agronomic and socio-economic context. Precision Agriculture 4.0 represents the convergence of advanced technologies—namely the Internet of Things (IoT), Artificial Intelligence (AI), and robotics—into a cohesive framework that enables real-time, data-driven farm management. The research explores how these integrated technologies facilitate enhanced spatial and temporal management of agricultural inputs, thereby addressing inefficiencies inherent in traditional farming systems. Key components analyzed include sensor networks for environmental and phenological monitoring, AI-based predictive analytics for optimized decision-making, and autonomous robotic platforms for executing precise agronomic interventions.The study assesses the limitations of legacy agricultural practices in the face of rising global food demand, climate variability, and dwindling natural resources. Within the Syrian context, the paper evaluates the deployment feasibility of PA 4.0 technologies under constraints such as limited infrastructure, political instability, and environmental degradation. Case studies are used to illustrate the empirical impact of PA 4.0 adoption, including improvements in input efficiency, crop yield, and sustainability metrics. The research further examines the structural barriers to adoption—such as digital illiteracy, policy gaps, and financing challenges—while outlining strategic enablers like capacity building, public-private partnerships, and targeted technological interventions. This work contributes to the broader discourse on agricultural modernization by offering a scalable and context-sensitive model for the integration of smart technologies into developing-world farming systems. The findings underscore the potential of PA 4.0 to enhance food security, environmental stewardship, and economic resilience in Syria and comparable regions.

Downloads

Download data is not yet available.

References

Abedalrhman, K., Alzaydi, A., & Shiban, Y. (2024). The convergence of Artificial Intelligence (AI) and Financial Technologies (FinTech) in shaping future urban landscape planning. Advances in Research, 25(5), 337. doi:10.9734/air/2024/v25i51166.

Adrian, A., Norwood, S.H., & Mask, P.L. (2005). Producers’ perceptions and attitudes toward precision agriculture technologies. Computers and Electronics in Agriculture, 48(3), 256. doi:10.1016/j.compag.2005.04.004.

Agrawal, J., & Arafat, M.Y. (2024). Transforming farming: A review of AI-powered UAV technologies in precision agriculture. Drones. Multidisciplinary Digital Publishing Institute, pp. 664. doi:10.3390/drones8110664.

Aldossary, M., Alharbi, H.A., & Hassan, C.A.U. (2024). Internet of Things (IoT)-enabled machine learning models for efficient monitoring of smart agriculture. IEEE Access, 12, 75718. doi:10.1109/access.2024.3404651.

Alobid, M., Abujudeh, S., & Szűcs, I. (2022). The role of blockchain in revolutionizing the agricultural sector. Sustainability, 14(7), 4313. doi:10.3390/su14074313.

Amami, R. et al. (2021). Impacts of different tillage practices on soil water infiltration for sustainable agriculture. Sustainability, 13(6), 3155. doi:10.3390/su13063155.

Assimakopoulos, F. et al. (2025). AI and related technologies in the fields of smart agriculture: A review. Information. Multidisciplinary Digital Publishing Institute, pp. 100. doi:10.3390/info16020100.

Atalla, S. et al. (2023). IoT-enabled precision agriculture: Developing an ecosystem for optimized crop management. Information, 14(4), 205. doi:10.3390/info14040205.

Athira, P. et al. (2020). Design concepts for the development of a semi-autonomous robotic platform for environment friendly agriculture. International Journal of Current Microbiology and Applied Sciences, 9(11), 2240. doi:10.20546/ijcmas.2020.911.269.

Ayaz, M. et al. (2019). Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE Access, 7, 129551. doi:10.1109/access.2019.2932609.

Bagha, H., Yavari, A., & Georgakopoulos, D. (2022). Hybrid sensing platform for IoT-based precision agriculture. Future Internet, 14(8), 233. doi:10.3390/fi14080233.

Balkrishna, A. et al. (2023). A comprehensive analysis of the advances in Indian Digital Agricultural architecture. Smart Agricultural Technology, 5, 100318. doi:10.1016/j.atech.2023.100318.

Bashir, A.M. (2020). Experiential analysis of awareness and adoption of e-extension among poultry farmers in Gombe State, Nigeria. Journal of Biology Agriculture and Healthcare [Preprint]. doi:10.7176/jbah/10-2-01.

Beluhova-Uzunova, R., & Dunchev, D. (2019). Precision farming – concepts and perspectives. Zagadnienia Ekonomiki Rolnej / Problems of Agricultural Economics, 360(3), 142. doi:10.30858/zer/112132.

Bezas, K., & Filippidou, F. (2023). The role of artificial intelligence and machine learning in smart and precision agriculture. Indonesian Journal of Computer Science, 12(4). doi:10.33022/ijcs.v12i4.3278.

Bongiovanni, R., & Lowenberg‐DeBoer, J. (2004). Precision agriculture and sustainability. Precision Agriculture, 5(4), 359. doi:10.1023/b:prag.0000040806.39604.aa.

Bowles, S., & Choi, J.-K. (2018). The neolithic agricultural revolution and the origins of private property. Journal of Political Economy, 127(5), 2186. doi:10.1086/701789.

Burg, S. van der, Wiseman, L., & Krkeljas, J. (2020). Trust in farm data sharing: reflections on the EU code of conduct for agricultural data sharing. Ethics and Information Technology, 23(3), 185. doi:10.1007/s10676-020-09543-1.

Charania, I., & Li, X. (2019). Smart farming: Agriculture’s shift from a labor intensive to technology native industry. Internet of Things, 9, p. 100142. doi:10.1016/j.iot.2019.100142.

Cisse, A. et al. (2024). A smart farming management system based on IoT technologies for sustainable agriculture. Advances in Science Technology and Engineering Systems Journal, 9(1), 1. doi:10.25046/aj090101.

Cisternas, I. et al. (2020). Systematic literature review of implementations of precision agriculture. Computers and Electronics in Agriculture, 176, 105626. doi:10.1016/j.compag.2020.105626.

Colavizza, G. et al. (2020). The citation advantage of linking publications to research data. PLoS ONE, 15(4). doi:10.1371/journal.pone.0230416.

Danbaki, C.A. et al. (2020). Precision agriculture technology: A literature review. Asian Journal of Advanced Research and Reports, 30. doi:10.9734/ajarr/2020/v14i330335.

Delavarpour, N. et al. (2021). A technical study on UAV characteristics for precision agriculture applications and associated practical challenges. Remote Sensing, 13(6), 1204. doi:10.3390/rs13061204.

Dhillon, R., & Moncur, Q. (2023). Small-scale farming: A review of challenges and potential opportunities offered by technological advancements. Sustainability. Multidisciplinary Digital Publishing Institute, pp. 15478. doi:10.3390/su152115478.

Elbaşi, E. et al. (2024). Optimizing agricultural data analysis techniques through AI-powered decision-making processes. Applied Sciences, 14(17), 8018. doi:10.3390/app14178018.

Elouadi, I., Ouazar, D., & Youssfi, L.E. (2020). A decision support model to improve water resources management in agriculture: Evaluation of the drip irrigation efficiency in the Ait Ben Yacoub region, East of Morocco. E3S Web of Conferences, 183, pp. 2006. doi:10.1051/e3sconf/202018302006.

Fuentes-Peñailillo, F. et al. (2024). New generation sustainable technologies for soilless vegetable production. Horticulturae, 10(1), 49. doi:10.3390/horticulturae10010049.

Gagliardi, G. et al. (2021). An Internet of Things solution for smart agriculture. Agronomy, 11(11), 2140. doi:10.3390/agronomy11112140.

Gómez, Á.L.P. et al. (2022). FARMIT: Continuous assessment of crop quality using machine learning and deep learning techniques for IoT-based smart farming. Cluster Computing, 25(3), 2163. doi:10.1007/s10586-021-03489-9.

Gupta, M. et al. (2020). Security and privacy in smart farming: Challenges and opportunities. IEEE Access, 8, 34564. doi:10.1109/access.2020.2975142.

Gusev, А.S., Скворцов, Е.А., & Шарапова, В. (2022). The study of the advantages and limitations, risks and possibilities of applying precision farming technologies. in IOP Conference Series Earth and Environmental Science, pp. 12019. doi:10.1088/1755-1315/949/1/012019.

Gyamfi, E.K. et al. (2024). Agricultural 4.0 leveraging on technological solutions: Study for smart farming sector. arXiv (Cornell University) [Preprint]. doi:10.48550/arxiv.2401.00814.

Hasan, Md.M., Islam, M.U., & Sadeq, M.J. (2022). Towards technological adaptation of advanced farming through AI, IoT, and Robotics: A Comprehensive overview. arXiv (Cornell University) [Preprint]. doi:10.48550/arxiv.2202.10459.

Hidayah, A. et al. (2022). Disease detection of solanaceous crops using deep learning for robot vision. Journal of Robotics and Control (JRC), 3(6), 790. doi:10.18196/jrc.v3i6.15948.

Hussein, A.H.A. et al. (2024). Harvesting the future: AI and IoT in agriculture. E3S Web of Conferences, 477, pp. 90. doi:10.1051/e3sconf/202447700090.

Islam, N. et al. (2021). A review of applications and communication technologies for Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) based sustainable smart farming. Sustainability. Multidisciplinary Digital Publishing Institute, pp. 1821. doi:10.3390/su13041821.

Ituriaga, J., Mariñas, K.A., & Saflor, C.S. (2024). Enhancing government services to rice farmers in the Philippines: A service quality–sustainability-focused approach for long-term agricultural resilience. Sustainability, 16(18), 8108. doi:10.3390/su16188108.

Javaid, M. et al. (2022). Understanding the potential applications of Artificial Intelligence in agriculture sector. Advanced Agrochem, 2(1), p. 15. doi:10.1016/j.aac.2022.10.001.

Kahtan Abedalrhman. (2024). Assessing agricultural health through FinTech data - An analytical approach. Zenodo [Preprint]. doi:10.5281/ZENODO.14523484.

Karunathilake, E.M.B.M. et al. (2023). The path to smart farming: Innovations and opportunities in precision agriculture. Agriculture, 13(8), 1593. doi:10.3390/agriculture13081593.

Khan, N. et al. (2021). Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. Sustainability, 13(9), 4883. doi:10.3390/su13094883.

Kour, V.P., & Arora, S. (2020). Recent developments of the Internet of Things in agriculture: A survey. IEEE Access, 8, 129924. doi:10.1109/access.2020.3009298.

Krishnan, K.S. et al. (2020). Self-automated agriculture system using IoT. International Journal of Recent Technology and Engineering (IJRTE), 8(6), 758. doi:10.35940/ijrte.f7264.038620.

Maloku, D. et al. (2020). Trends in scientific research on precision farming in agriculture using science mapping method. International Review of Applied Sciences and Engineering, 11(3), p. 232. doi:10.1556/1848.2020.00086.

Mana, A.A. et al. (2024). Sustainable AI-based production agriculture: Exploring AI applications and implications in agricultural practices. Smart Agricultural Technology, 7, 100416. doi:10.1016/j.atech.2024.100416.

Mathur, R. (2023). Artificial Intelligence in sustainable agriculture. International Journal for Research in Applied Science and Engineering Technology, 11(6), 4047. doi:10.22214/ijraset.2023.54360.

Mavridis, A., & Gertsis, A. (2021). A new era for sustainable farming systems for Greece, based on convergence of smart farming, agricultural robotics and geospatial technologies. International Journal of Agriculture Environment and Bioresearch, 6(1), 114. doi:10.35410/ijaeb.2021.5607.

Mishra, S. (2024). Remote controlled agricultural robot. International Journal for Research in Applied Science and Engineering Technology, 12(5), 2701. doi:10.22214/ijraset.2024.62180.

Mitchell, S., Weersink, A., & Bannon, N. (2020). Adoption barriers for precision agriculture technologies in Canadian crop production. Canadian Journal of Plant Science, 101(3), 412. doi:10.1139/cjps-2020-0234.

Mitra, A. et al. (2022). Everything you wanted to know about smart agriculture. arXiv (Cornell University) [Preprint]. doi:10.48550/arxiv.2201.04754.

Mohammed, M., Riad, K., & Alqahtani, N.K. (2021). Efficient IoT-based control for a smart subsurface irrigation system to enhance irrigation management of date palm. Sensors, 21(12), 3942. doi:10.3390/s21123942.

Monteiro, A., Santos, S.R. dos, & Gonçalves, P. (2021). Precision agriculture for crop and livestock farming—Brief review. Animals. Multidisciplinary Digital Publishing Institute, pp. 2345. doi:10.3390/ani11082345.

Namkhah, Z. et al. (2023). Advancing sustainability in the food and nutrition system: a review of artificial intelligence applications. Frontiers in Nutrition. Frontiers Media. doi:10.3389/fnut.2023.1295241.

Navarro, E. de M., Costa, N., & Pereira, Á. (2020). A systematic review of IoT solutions for smart farming. Sensors. Multidisciplinary Digital Publishing Institute, pp. 4231. doi:10.3390/s20154231.

Nhemachena, C. et al. (2020). Climate change impacts on water and agriculture sectors in Southern Africa: Threats and opportunities for sustainable development. Water, 12(10), 2673. doi:10.3390/w12102673.

Omar, S.I. (2021). Internet of Things (IoT) for smart farming: A systematic review. International Journal of Computer Applications, 47. doi:10.5120/ijca2021921182.

Omia, E. et al. (2023). Remote sensing in field crop monitoring: A comprehensive review of sensor systems, data analyses and recent advances. Remote Sensing. Multidisciplinary Digital Publishing Institute, pp. 354. doi:10.3390/rs15020354.

Onyeaka, H. et al. (2023). Using Artificial Intelligence to tackle food waste and enhance the circular economy: Maximising resource efficiency and minimising environmental impact: A review. Sustainability. Multidisciplinary Digital Publishing Institute, pp. 10482. doi:10.3390/su151310482.

Otieno, M. (2023). An extensive survey of smart agriculture technologies: Current security posture. World Journal of Advanced Research and Reviews, 18(3), 1207. doi:10.30574/wjarr.2023.18.3.1241.

Pachot, A., & Patissier, C. (2022). Towards sustainable Artificial Intelligence: An overview of environmental protection uses and issues. arXiv (Cornell University) [Preprint]. doi:10.48550/arxiv.2212.11738.

Pierpaoli, E. et al. (2013). Drivers of precision agriculture technologies adoption: A literature review. Procedia Technology. Elsevier BV, pp. 61. doi:10.1016/j.protcy.2013.11.010.

Plaščak, I. et al. (2021). An overview of precision irrigation systems used in agriculture. Tehnički glasnik, 15(4), 546. doi:10.31803/tg-20210416103500.

Prakash, C. et al. (2023). Advancements in smart farming: A comprehensive review of IoT, wireless communication, sensors, and hardware for agricultural automation. Sensors and Actuators A Physical. Elsevier BV, pp. 114605. doi:10.1016/j.sna.2023.114605.

Pretto, A. et al. (2020). Building an aerial–ground robotics system for precision farming: An adaptable solution. IEEE Robotics & Automation Magazine, 28(3), 29. doi:10.1109/mra.2020.3012492.

Rahaman, M. et al. (2024). Privacy-centric AI and IoT solutions for smart rural farm monitoring and control. Sensors, 24(13), 4157. doi:10.3390/s24134157.

Roberts, D.P. et al. (2021). Precision agriculture and geospatial techniques for sustainable disease control. Indian Phytopathology, 74(2), p. 287. doi:10.1007/s42360-021-00334-2.

Ryan, M., Nuhoff-Isakhanyan, G., & Teki̇nerdoğan, B. (2023). An interdisciplinary approach to artificial intelligence in agriculture. NJAS Impact in Agricultural and Life Sciences, 95(1). doi:10.1080/27685241.2023.2168568.

Saad, A., Benyamina, A.E.H., & Gamatié, A. (2020). Water management in agriculture: A survey on current challenges and technological solutions. IEEE Access, 8, 38082. doi:10.1109/access.2020.2974977.

Saheb, T., & Dehghani, M.R. (2021). Artificial Intelligence for sustainable energy: A contextual topic modeling and content analysis. arXiv (Cornell University) [Preprint]. doi:10.48550/arxiv.2110.00828.

Saied, M., & Serpokrilov, N.S. (2020). Evaluation results of the wastewater treatment system of small settlements in Syria. IOP Conference Series Materials Science and Engineering, 775(1), pp. 12096. doi:10.1088/1757-899x/775/1/012096.

Sakka, M.E. et al. (2025). A review of CNN applications in smart agriculture using multimodal data. Sensors. Multidisciplinary Digital Publishing Institute, pp. 472. doi:10.3390/s25020472.

Senoo, E.E.K. et al. (2024). IoT solutions with Artificial Intelligence technologies for precision agriculture: Definitions, applications, challenges, and opportunities. Electronics, 13(10), 1894. doi:10.3390/electronics13101894.

Singh, R.K., Berkvens, R., & Weyn, M. (2021). AgriFusion: An architecture for IoT and emerging technologies based on a precision agriculture survey. IEEE Access, 9, 136253. doi:10.1109/access.2021.3116814.

Sivakumar, R. et al. (2021). Internet of Things and machine learning applications for smart precision agriculture. in IntechOpen eBooks. IntechOpen. doi:10.5772/intechopen.97679.

Sonka, S., & Cheng, C. (2015). Precision agriculture: Not the same as big data but.... Farmdoc Daily, 5. doi:10.22004/ag.econ.229528.

Sourav, A.I., & Emanuel, A.W.R. (2021). Recent trends of big data in precision agriculture: A review. IOP Conference Series Materials Science and Engineering. IOP Publishing, pp. 12081. doi:10.1088/1757-899x/1096/1/012081.

Soussi, A. et al. (2024). Smart sensors and smart data for precision agriculture: A review. Sensors. Multidisciplinary Digital Publishing Institute, pp. 2647. doi:10.3390/s24082647.

Thompson, N.M., DeLay, N.D., & Mintert, J. (2021). Understanding the farm data lifecycle: collection, use, and impact of farm data on U.S. commercial corn and soybean farms. Precision Agriculture, 22(6), 1685. doi:10.1007/s11119-021-09807-w.

Torky, M., & Hassanein, A.E. (2020). Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and challenges. Computers and Electronics in Agriculture, 178, 105476. doi:10.1016/j.compag.2020.105476.

Valeryevich, S.S. et al. (2020). Improvement of investment attractiveness and efficiency of agriculture enterprises as a result of digital technologies. International Journal of Innovative Technology and Exploring Engineering, 9(3), 3036. doi:10.35940/ijitee.c8071.019320.

Vanishree, K., & Nagaraja, G.S. (2021). Emerging line of research approach in precision agriculture: An insight study. International Journal of Advanced Computer Science and Applications, 12(2). doi:10.14569/ijacsa.2021.0120239.

Vatin, N. et al. (2024). Precision agriculture and sustainable yields: Insights from IoT-driven farming and the precision agriculture test. BIO Web of Conferences, 86, pp. 1091. doi:10.1051/bioconf/20248601091.

Williamson, H.F. et al. (2021). Data management challenges for artificial intelligence in plant and agricultural research. F1000Research, 10, 324. doi:10.12688/f1000research.52204.1.

Wiseman, L. et al. (2019). Farmers and their data: An examination of farmers’ reluctance to share their data through the lens of the laws impacting smart farming. NJAS - Wageningen Journal of Life Sciences, (1), p. 1. doi:10.1016/j.njas.2019.04.007.

Woo-García, R.M. et al. (2024). Implementation of a wireless sensor network for environmental measurements. Technologies, 12(3), 41. doi:10.3390/technologies12030041.

Xing, Y., & Wang, X. (2024). Precision agriculture and water conservation strategies for sustainable crop production in arid regions. Plants. Multidisciplinary Digital Publishing Institute, pp. 3184. doi:10.3390/plants13223184.

Yasam, S. et al. (2019). Precision farming and predictive analytics in agriculture context. International Journal of Engineering and Advanced Technology, 9, 74. doi:10.35940/ijeat.a1023.1291s52019.

Ye, K. et al. (2025). Key intelligent pesticide prescription spraying technologies for the control of pests, diseases, and weeds: A review. Agriculture. Multidisciplinary Digital Publishing Institute, pp. 81. doi:10.3390/agriculture15010081.

Yin, H. et al. (2021). Soil sensors and plant wearables for smart and precision agriculture. Advanced Materials. doi:10.1002/adma.202007764.

Zarei, S. et al. (2021). Developing water, energy, and food sustainability performance indicators for agricultural systems. Scientific Reports, 11(1). doi:10.1038/s41598-021-02147-9.

Zitan, H., & Chafik, K. (2021). Literature review synthesis on predictors of green IoT irrigation adoption in Morocco. Theoretical Construct Essay, 234. doi:10.1145/3460620.3460763.

Бикбулатова, Г.Г. et al. (2020). Using remote sensing methods in precision agriculture. doi:10.2991/assehr.k.200113.138.

Published

2025-05-31

How to Cite

Abedalrhman, K., & Alzaydi, A. (2025). Precision Agriculture 4.0: Integrating Advanced IoT, AI, and Robotics Solutions for Enhanced Yield, Sustainability, and Resource Optimization-Evidence from Agricultural Practices in Syria. Applied Science and Biotechnology Journal for Advanced Research, 4(3), 7–27. https://doi.org/10.5281/zenodo.15568353

Issue

Section

Articles

ARK