Digital Innovations in Healthcare: Harnessing Artificial Intelligence, IoT, and Big Data Analytics for Personalized Medicine and Improved Patient Outcomes—Insights from the Syrian Healthcare Sector

Authors

  • Ammar Alzaydi Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia / Interdeciplinary Research Centre for Biosystems and Machines, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
  • Kahtan Abedalrhman Kanzi Business Consultant, Al-Khobar, Saudi Arabia

DOI:

https://doi.org/10.5281/zenodo.15621789

Keywords:

digital healthcare, artificial intelligence, internet of things, big data analytics, personalised medicine, healthcare innovation, syrian healthcare sector, healthcare transformation, technology adoption

Abstract

This study explores the transformative role of digital innovations—specifically artificial intelligence (AI), the Internet of Things (IoT), and big data analytics—in addressing critical challenges within the Syrian healthcare system, a context defined by limited resources, disrupted infrastructure, and significant healthcare disparities. By integrating these technologies, healthcare delivery can be revolutionized through predictive analytics, remote monitoring, and personalized treatment strategies, thereby enhancing clinical outcomes, operational efficiency, and system resilience. The research investigates the current landscape of digital health adoption in Syria, identifying infrastructural, technical, and policy-related barriers while proposing data-driven frameworks for strategic implementation. Emphasis is placed on how AI-driven diagnostics, IoT-enabled remote care, and analytics-informed decision-making can collectively support evidence-based practices and facilitate the transition towards a patient-centric, precision medicine paradigm. This paper offers targeted insights for policymakers, healthcare providers, and technology developers aiming to modernize healthcare in conflict-affected and resource-constrained environments. The findings contribute to the broader discourse on sustainable healthcare transformation, demonstrating the potential of digital technologies to strengthen healthcare infrastructure, foster health equity, and support long-term development goals. Moreover, the paper underscores the necessity of robust data governance, ethical AI frameworks, and cross-sectoral collaboration to ensure equitable and secure deployment of digital health solutions. Ultimately, this research provides a strategic roadmap for harnessing digital innovation to achieve improved healthcare outcomes and resilience in Syria and similar contexts.

Downloads

Download data is not yet available.

References

Abedalrhman, K., Alzaydi, A., & Shiban, Y. (2024). The convergence of Artificial Intelligence (AI) and Financial Technologies (FinTech) in shaping future urban landscape planning. Advances in Research, 25(5), 337. doi:10.9734/air/2024/v25i51166.

Abujaber, A.A., & Nashwan, A.J. (2024). Ethical framework for Artificial Intelligence in healthcare research: A path to integrity. World Journal of Methodology. doi:10.5662/wjm.v14.i3.94071.

Abukhadijah, H.J., & Nashwan, A.J. (2024). Transforming hospital quality improvement through harnessing the power of Artificial Intelligence. Global Journal on Quality and Safety in Healthcare, 7(3), 132. doi:10.36401/jqsh-24-4.

Aerts, A., & Bogdan-Martin, D. (2021). Leveraging data and AI to deliver on the promise of digital health. International Journal of Medical Informatics, 150, 104456. doi:10.1016/j.ijmedinf.2021.104456.

Ahmed, M.I. et al. (2023). A systematic review of the barriers to the implementation of Artificial Intelligence in healthcare. Cureus. doi:10.7759/cureus.46454.

Ahuja, A.S. (2019). The impact of artificial Intelligence in medicine on the future role of the physician. PeerJ, 7. doi:10.7717/peerj.7702.

Akinrinmade, A.O. et al. (2023). Artificial Intelligence in healthcare: Perception and reality. Cureus. doi:10.7759/cureus.45594.

Alam, M.Z., Hu, W., & Uddin, Md.A. (2020). Digital transformation in healthcare services sector of Bangladesh: Current status, challenges and future direction. Journal on Innovation and Sustainability RISUS, 11(1), 30. doi:10.23925/2179-3565.2020v11i1p30-38.

Al-antari, M.A. (2023). Artificial Intelligence for medical diagnostics—Existing and future AI technology!. Diagnostics. doi:10.3390/diagnostics13040688.

Alaran, M. et al. (2025). Challenges and opportunities of Artificial Intelligence in African health space. Digital Health, 11. doi:10.1177/20552076241305915.

Alawiye, T.R. (2024). The impact of digital technology on healthcare delivery and patient outcomes. E-Health Telecommunication Systems and Networks, 13(2), 13. doi:10.4236/etsn.2024.132002.

Almoselhy, R.I.M. and Usmani, A. (2024). AI in food science: Exploring core elements, challenges, and future directions. Open Access Journal of Microbiology & Biotechnology, 9(4), 1. doi:10.23880/oajmb-16000313.

Alowais, S.A. et al. (2023). Revolutionizing healthcare: the role of Artificial Intelligence in clinical practice. BMC Medical Education. BioMed Central. doi:10.1186/s12909-023-04698-z.

Amann, J. et al. (2020). Explainability for Artificial Intelligence in healthcare: a multidisciplinary perspective. BMC Medical Informatics and Decision Making, 20(1). doi:10.1186/s12911-020-01332-6.

Arora, A. et al. (2023). The value of standards for health datasets in Artificial Intelligence-based applications. Nature Medicine, 29(11), 2929. doi:10.1038/s41591-023-02608-w.

Arya, V. et al. (2019). One explanation does not fit all: A toolkit and taxonomy of AI explainability techniques. arXiv (Cornell University) [Preprint]. doi:10.48550/arxiv.1909.03012.

Baiyewu, A.S. (2023). Overview of the role of data analytics in advancing health service. OALib, 10(6), 1. doi:10.4236/oalib.1110207.

Baudier, P. et al. (2022). Digital transformation of healthcare during the COVID-19 pandemic: Patients’ teleconsultation acceptance and trusting beliefs. Technovation, 120, 102547. doi:10.1016/j.technovation.2022.102547.

Bekbolatova, M. et al. (2024). Transformative potential of AI in healthcare: Definitions, applications, and navigating the ethical landscape and public perspectives. Healthcare. Multidisciplinary Digital Publishing Institute, pp. 125. doi:10.3390/healthcare12020125.

Bhagat, S.V., & Kanyal, D. (2024). Navigating the future: The transformative impact of artificial intelligence on hospital management- A comprehensive review. Cureus, Inc. doi:10.7759/cureus.54518.

Briganti, G., & Moine, O.L. (2020). Artificial Intelligence in medicine: Today and tomorrow. Frontiers in Medicine, 7. doi:10.3389/fmed.2020.00027.

Chaddad, A. et al. (2023). Survey of explainable AI techniques in healthcare. Sensors. Multidisciplinary Digital Publishing Institute, pp. 634. doi:10.3390/s23020634.

Chang, A. (2019). The role of Artificial Intelligence in digital health. Computers in Health Care, pp. 71. doi:10.1007/978-3-030-12719-0_7.

Charalambous, A. (2024). Digital transformation in healthcare: have we gone off the rails?. Asia-Pacific Journal of Oncology Nursing, 11(5), 100481. doi:10.1016/j.apjon.2024.100481.

Chenais, G., Lagarde, E., & Gil‐Jardiné, C. (2022). Artificial Intelligence in emergency medicine: Viewpoint of current applications and foreseeable opportunities and challenges. Journal of Medical Internet Research. doi:10.2196/40031.

Chin, M.H. et al. (2023). Guiding principles to address the impact of algorithm bias on racial and ethnic disparities in health and health care. JAMA Network Open, 6(12). doi:10.1001/jamanetworkopen.2023.45050.

Cross, J.M., Choma, M.A., & Onofrey, J.A. (2024). Bias in medical AI: Implications for clinical decision-making. PLOS Digital Health. doi:10.1371/journal.pdig.0000651.

Cummins, N., & Schuller, B.W. (2020). Five crucial challenges in digital health. Frontiers in Digital Health, 2. doi:10.3389/fdgth.2020.536203.

Dankwa‐Mullan, I. et al. (2021). A proposed framework on integrating health equity and racial justice into the Artificial Intelligence development lifecycle. Journal of Health Care for the Poor and Underserved, 32, 300. doi:10.1353/hpu.2021.0065.

Dator, W.L., Abunab, H.Y., & Ayen, N.D. (2018). Health challenges and access to health care among Syrian refugees in Jordan: a review. Eastern Mediterranean Health Journal, 680. doi:10.26719/2018.24.7.680.

Davenport, T.H., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), p. 94. doi:10.7861/futurehosp.6-2-94.

Dhopte, A., & Bagde, H. (2023). Smart smile: Revolutionizing dentistry with Artificial Intelligence. Cureus. doi:10.7759/cureus.41227.

Dixon, D. et al. (2024). Unveiling the influence of AI predictive analytics on patient outcomes: A comprehensive narrative review. Cureus [Preprint]. doi:10.7759/cureus.59954.

Elendu, C. et al. (2023). Ethical implications of AI and robotics in healthcare: A review. Medicine. doi:10.1097/md.0000000000036671.

Farhud, D.D., & Zokaei, S. (2021). Ethical issues of Artificial Intelligence in medicine and healthcare. Iranian Journal of Public Health. Knowledge E. doi:10.18502/ijph.v50i11.7600.

Fletcher, M., Read, C., & D’Adderio, L. (2023). Nurse leadership post COVID pandemic—A framework for digital healthcare innovation and transformation. SAGE Open Nursing, 9. doi:10.1177/23779608231160465.

Fouad, H. et al. (2020). Analyzing patient health information based on IoT sensor with AI for improving patient assistance in the future direction. Measurement, 159, 107757. doi:10.1016/j.measurement.2020.107757.

Gala, D. et al. (2024). The role of Artificial Intelligence in improving patient outcomes and future of healthcare delivery in cardiology: A narrative review of the literature. Healthcare, 481. doi:10.3390/healthcare12040481.

Ghassemi, M., Oakden‐Rayner, L., & Beam, A.L. (2021). The false hope of current approaches to explainable artificial intelligence in health care. The Lancet Digital Health. Elsevier BV. doi:10.1016/s2589-7500(21)00208-9.

Gichoya, J.W. et al. (2023). AI pitfalls and what not to do: mitigating bias in AI. British Journal of Radiology. doi:10.1259/bjr.20230023.

Giordano, C. et al. (2021). Accessing Artificial Intelligence for clinical decision-making. Frontiers in Digital Health. doi:10.3389/fdgth.2021.645232.

Goellner, S., Tropmann-Frick, M., & Brumen, B. (2024). Responsible Artificial Intelligence: A structured literature review. arXiv (Cornell University) [Preprint]. doi:10.48550/arxiv.2403.06910.

Gopal, G. et al. (2018). Digital transformation in healthcare – architectures of present and future information technologies. Clinical Chemistry and Laboratory Medicine (CCLM), 57(3), 328. doi:10.1515/cclm-2018-0658.

Gupta, A. et al. (2019). Innovative telemedicine approaches in different countries: Opportunity for adoption, leveraging, and scaling-up. Telehealth and Medicine Today, 5. doi:10.30953/tmt.v5.160.

Gurevich, E., Hassan, B.E., & Morr, C.E. (2022). Equity within AI systems: What can health leaders expect?. Healthcare Management Forum, 36(2), 119. doi:10.1177/08404704221125368.

Herrmann, M. et al. (2018). Digital transformation and disruption of the health care sector: Internet-based observational study. Journal of Medical Internet Research, 20(3). doi:10.2196/jmir.9498.

Hildt, E. (2025). What is the role of explainability in medical Artificial Intelligence? A case-based approach. Bioengineering, 12(4), 375. doi:10.3390/bioengineering12040375.

Hou, J. et al. (2024). Self-eXplainable AI for medical image analysis: A survey and new outlooks. arXiv (Cornell University) [PrSeprint]. doi:10.48550/arxiv.2410.02331.

Jeyaraman, M. et al. (2023). Unraveling the ethical enigma: Artificial Intelligence in healthcare. Cureus. doi:10.7759/cureus.43262.

Jha, D. et al. (2023). Ensuring trustworthy medical Artificial Intelligence through ethical and philosophical principles. arXiv (Cornell University) [Preprint]. doi:10.48550/arxiv.2304.11530.

Jones, G. et al. (2019). Promoting an overdue digital transformation in healthcare. Available at: https://apo.org.au/node/244176 (Accessed: January 2025).

Joy, J.E., Penhoet, E.E., & Petitti, D.B. (2005). Common weaknesses in study designs. Available at: https://www.ncbi.nlm.nih.gov/books/NBK22323/ (Accessed: January 2025).

Kahtan Abedalrhman, & Ammar Alzaydi. (2024). Integration of FinTech applications in public health strategies for sustainable development. Zenodo [Preprint]. doi:10.5281/ZENODO.13771503.

Kandasamy, U.C. (2024). Ethical leadership in the age of AI challenges, opportunities and framework for ethical leadership. arXiv (Cornell University) [Preprint]. doi:10.48550/arxiv.2410.18095.

Kapa, S. (2023). The role of Artificial Intelligence in the medical field. Journal of Computer and Communications, 11(11), 1. doi:10.4236/jcc.2023.1111001.

Kelly, C. et al. (2019). Key challenges for delivering clinical impact with Artificial Intelligence. BMC Medicine, 17(1). doi:10.1186/s12916-019-1426-2.

Kim, H., Kwon, I.H., & Chul, W. (2021). Future and development direction of digital healthcare. Healthcare Informatics Research, 27(2), 95. doi:10.4258/hir.2021.27.2.95.

Kokol, P. et al. (2022). Role of agile in digital public health transformation. Frontiers in Public Health, 10. doi:10.3389/fpubh.2022.899874.

Kriegová, E. et al. (2021). A theoretical model of health management using data-driven decision-making: the future of precision medicine and health. Journal of Translational Medicine, 19(1). doi:10.1186/s12967-021-02714-8.

Kuhlberg, J. et al. (2023). Advancing community engaged approaches to identifying structural drivers of racial bias in health diagnostic algorithms. arXiv (Cornell University) [Preprint]. doi:10.48550/arxiv.2305.13485.

Kuwaiti, A.A. et al. (2023). A review of the role of Artificial Intelligence in healthcare. Journal of Personalized Medicine, 951. doi:10.3390/jpm13060951.

Lambert, S.I. et al. (2023). An integrative review on the acceptance of artificial intelligence among healthcare professionals in hospitals. NPJ Digital Medicine. Nature Portfolio. doi:10.1038/s41746-023-00852-5.

Li, Y.-H. et al. (2024). Innovation and challenges of artificial intelligence technology in personalized healthcare. Scientific Reports. Nature Portfolio. doi:10.1038/s41598-024-70073-7.

Liu, M. et al. (2023). Towards clinical AI fairness: A translational perspective. arXiv (Cornell University) [Preprint]. doi:10.48550/arxiv.2304.13493.

Liu, S. et al. (2024). Leveraging explainable artificial intelligence to optimize clinical decision support. Journal of the American Medical Informatics Association, 31(4), 968. doi:10.1093/jamia/ocae019.

Loh, H.W. et al. (2022). Application of explainable artificial intelligence for healthcare: A systematic review of the last decade (2011–2022). Computer Methods and Programs in Biomedicine. Elsevier BV, pp. 107161. doi:10.1016/j.cmpb.2022.107161.

Lopes, M.H.B. de M. et al. (2020). Use of Artificial Intelligence in precision nutrition and fitness. in Elsevier eBooks. Elsevier BV, pp. 465. doi:10.1016/b978-0-12-817133-2.00020-3.

Maki, O. et al. (2022). Development of digitalization road map for healthcare facility management. IEEE Access, 10, 14450. doi:10.1109/access.2022.3146341.

Malik, Y.S. et al. (2020). How Artificial Intelligence may help the Covid‐19 pandemic: Pitfalls and lessons for the future. Reviews in Medical Virology, 1. doi:10.1002/rmv.2205.

Markus, A.F., Kors, J.A., & Rijnbeek, P.R. (2020). The role of explainability in creating trustworthy artificial intelligence for health care: A comprehensive survey of the terminology, design choices, and evaluation strategies. Journal of Biomedical Informatics. Elsevier BV, pp. 103655. doi:10.1016/j.jbi.2020.103655.

Meinert, E. et al. (2018). Weighing benefits and risks in aspects of security, privacy and adoption of technology in a value-based healthcare system. BMC Medical Informatics and Decision Making, 18(1). doi:10.1186/s12911-018-0700-0.

Mennella, C. et al. (2024). Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon. Elsevier BV. doi:10.1016/j.heliyon.2024.e26297.

Muhammad, D., & Bendechache, M. (2024). Unveiling the black box: A systematic review of Explainable Artificial Intelligence in medical image analysis. Computational and Structural Biotechnology Journal. Elsevier BV, pp. 542. doi:10.1016/j.csbj.2024.08.005.

Mumtaz, H. et al. (2023). Current challenges and potential solutions to the use of digital health technologies in evidence generation: A narrative review. Frontiers in Digital Health. doi:10.3389/fdgth.2023.1203945.

Naik, N. et al. (2022). Transforming healthcare through a digital revolution: A review of digital healthcare technologies and solutions. Frontiers in Digital Health. doi:10.3389/fdgth.2022.919985.

Nascimento, I.J.B. do et al. (2023). Barriers and facilitators to utilizing digital health technologies by healthcare professionals. NPJ Digital Medicine. Nature Portfolio. doi:10.1038/s41746-023-00899-4.

Nazer, L. et al. (2023). Bias in Artificial Intelligence algorithms and recommendations for mitigation. PLOS Digital Health. doi:10.1371/journal.pdig.0000278.

Okonji, O.R., Yunusov, K., & Gordon, B. (2024). Applications of generative AI in healthcare: Algorithmic, ethical, legal and societal considerations. doi:10.36227/techrxiv.171527587.75649430/v1.

Olan, F. et al. (2024). Enabling explainable artificial intelligence capabilities in supply chain decision support making. Production Planning & Control, 1. doi:10.1080/09537287.2024.2313514.

Olatunji, I.E. et al. (2022). A review of anonymization for healthcare data. Big Data. doi:10.1089/big.2021.0169.

Olufadewa, I.I., & Adesina, M.A. (2021). Scaling up digital health in conflict countries. Journal of the International Society for Telemedicine and eHealth, 9. doi:10.29086/jisfteh.9.e2.

Ossa, L.A. et al. (2024). Integrating ethics in AI development: a qualitative study. BMC Medical Ethics, 25(1). doi:10.1186/s12910-023-01000-0.

Otoum, S., Ridhawi, I.A., & Mouftah, H.T. (2021). Preventing and controlling epidemics through blockchain-assisted AI-enabled networks. IEEE Network, 35(3), 34. doi:10.1109/mnet.011.2000628.

Palfreyman, J.W. and Morton, J. (2022). The benefits of agile digital transformation to innovation processes. Journal of Strategic Contracting and Negotiation, 6(1), p. 26. doi:10.1177/20555636221079943.

Pathak, K.P. et al. (2021). Implementations of digital technologies in COVID -19 pandemic and other health threats: multinationals responses. Research Society and Development, 10(14). doi:10.33448/rsd-v10i14.21776.

Peek, N., Sujan, M., & Scott, P. (2020). Digital health and care in pandemic times: impact of COVID-19. BMJ Health & Care Informatics, 27(1). doi:10.1136/bmjhci-2020-100166.

Pesapane, F. et al. (2021). Legal and regulatory framework for AI solutions in healthcare in EU, US, China, and Russia: New scenarios after a pandemic. Radiation, 1(4), 261. doi:10.3390/radiation1040022.

Rawabdeh, A.A., & Khassawneh, A.S. (2018). Health financing policies in Jordan: The allocation of public expenditures in global context. Makara Journal of Health Research, 22(3). doi:10.7454/msk.v22i3.9949.

Sadeghi, Z. et al. (2023). A brief review of explainable Artificial Intelligence in healthcare. doi:10.2139/ssrn.4600029.

Salinari, A. et al. (2023). The application of digital technologies and Artificial Intelligence in healthcare: An overview on nutrition assessment. Diseases, 11(3), 97. doi:10.3390/diseases11030097.

Schork, N.J. (2019). Artificial Intelligence and personalized medicine. in Cancer Treatment and Research, pp. 265. doi:10.1007/978-3-030-16391-4_11.

Seh, A.H. et al. (2020). Healthcare data breaches: Insights and implications. Healthcare, 133. doi:10.3390/healthcare8020133.

Senbekov, M. et al. (2020). The recent progress and applications of digital technologies in healthcare: A review. International Journal of Telemedicine and Applications, 1. doi:10.1155/2020/8830200.

Sendak, M. et al. (2019). ‘The Human Body is a Black Box’: Supporting clinical decision-making with deep learning. arXiv (Cornell University) [Preprint]. doi:10.48550/arxiv.1911.08089.

Serag, A. et al. (2019). Translational AI and deep learning in diagnostic pathology. Frontiers in Medicine. doi:10.3389/fmed.2019.00185.

Serrano, D.R. et al. (2024). Artificial Intelligence (AI) applications in drug discovery and drug delivery: Revolutionizing personalized medicine. Pharmaceutics, 1328. doi:10.3390/pharmaceutics16101328.

Shamszare, H., & Choudhury, A. (2023). ‘Clinicians’ perceptions of Artificial Intelligence: Focus on workload, risk, trust, clinical decision making, and clinical integration. Healthcare, 11(16), 2308. doi:10.3390/healthcare11162308.

Shang, Z. et al. (2024). Artificial Intelligence, the digital surgeon: Unravelling its emerging footprint in healthcare – The narrative review. Journal of Multidisciplinary Healthcare, 4011. doi:10.2147/jmdh.s482757.

Shuaib, A. (2024). Transforming healthcare with AI: Promises, pitfalls, and pathways forward. International Journal of General Medicine, 1765. doi:10.2147/ijgm.s449598.

Sikandar, H. et al. (2022). Digital technologies in healthcare: A systematic review and bibliometric analysis. International Journal of Online and Biomedical Engineering (iJOE), 34. doi:10.3991/ijoe.v18i08.31961.

Stoumpos, A.I., Kitsios, F., & Talias, Μ.A. (2023). Digital transformation in healthcare: Technology acceptance and its applications. International Journal of Environmental Research and Public Health, 20(4), 3407. doi:10.3390/ijerph20043407.

Sujan, M. et al. (2021). The contribution of human factors and ergonomics to the design and delivery of safe future healthcare. Future Healthcare Journal, 8(3). doi:10.7861/fhj.2021-0112.

Sun, N.X. et al. (2024). From principles to practice: A deep dive into AI ethics and regulations. arXiv (Cornell University) [Preprint]. doi:10.48550/arxiv.2412.04683.

Szabo, D.A., & Neagu, N. (2023). Innovations in technology with applicability in healthcare. Health Sports & Rehabilitation Medicine, 24(3), p. 146. doi:10.26659/pm3.2023.24.3.146.

Tan, C.H. et al. (2024). Clinical use cases in artificial intelligence: current trends and future opportunities. Singapore Medical Journal, 65(3), 183. doi:10.4103/singaporemedj.smj-2023-193.

Tang, L., Li, J., & Fantus, S. (2023). Medical Artificial Intelligence ethics: A systematic review of empirical studies. Digital Health. doi:10.1177/20552076231186064.

Tariq, Z. (2023). Integrating Artificial Intelligence and humanities in healthcare. arXiv (Cornell University) [Preprint]. doi:10.48550/arxiv.2302.07081.

Thapa, C., & Camtepe, S. (2020). Precision health data: Requirements, challenges and existing techniques for data security and privacy. Computers in Biology and Medicine. Elsevier BV, pp. 104130. doi:10.1016/j.compbiomed.2020.104130.

Thilakarathne, N.N. et al. (2020). The adoption of ICT powered healthcare technologies towards managing global pandemics. arXiv (Cornell University) [Preprint]. doi:10.48550/arxiv.2009.05716.

Udegbe, F.C. et al. (2024). The role of Artificial Intelligence in healthcare: a systematic review of applications and challenges. International Medical Science Research Journal, 500. doi:10.51594/imsrj.v4i4.1052.

Vayena, E., Blasimme, A., & Cohen, I.G. (2018). Machine learning in medicine: Addressing ethical challenges. PLoS Medicine, 15(11). doi:10.1371/journal.pmed.1002689.

Wang, C. et al. (2022). Towards reliable and explainable AI model for solid pulmonary nodule diagnosis. arXiv (Cornell University) [Preprint]. doi:10.48550/arxiv.2204.04219.

Weld, D.S., & Bansal, G. (2018). The challenge of crafting intelligible intelligence. arXiv (Cornell University) [Preprint]. doi:10.48550/arxiv.1803.04263.

Willie, M.M., & Nkomo, P. (2019). Digital transformation in healthcare – South Africa context. Global Journal of Immunology and Allergic Diseases, 7(1), 1. doi:10.31907/2310-6980.2019.07.01.

Yadav, N. et al. (2023). Data privacy in healthcare: In the era of Artificial Intelligence. Indian Dermatology Online Journal, 14(6), 788. doi:10.4103/idoj.idoj_543_23.

Yelne, S. et al. (2023). Harnessing the power of AI: A comprehensive review of its impact and challenges in nursing science and healthcare. Cureus. doi:10.7759/cureus.49252.

Yu, K., Beam, A.L., & Kohane, I.S. (2018). Artificial Intelligence in healthcare. Nature Biomedical Engineering. Nature Portfolio, 719. doi:10.1038/s41551-018-0305-z.

Zahlan, A., Ranjan, R.P., & Hayes, D. (2023). Artificial Intelligence innovation in healthcare: Literature review, exploratory analysis, and future research. Technology in Society, 74, 102321. doi:10.1016/j.techsoc.2023.102321.

Zhang, E., & Worthington, R. (2021). Barriers to healthcare access and utilization among urban Syrian refugees in Turkey. Journal of Student Research, 10(2). doi:10.47611/jsr.v10i2.1240.

Zhang, Y., Weng, Y., & Lund, J.N. (2022). Applications of explainable Artificial Intelligence in diagnosis and surgery. Diagnostics, 237. doi:10.3390/diagnostics12020237.

Zou, J., & Schiebinger, L. (2021). Ensuring that biomedical AI benefits diverse populations. EBioMedicine. Elsevier BV, pp. 103358. doi:10.1016/j.ebiom.2021.103358.

Published

2025-05-31

How to Cite

Alzaydi, A., & Abedalrhman, K. (2025). Digital Innovations in Healthcare: Harnessing Artificial Intelligence, IoT, and Big Data Analytics for Personalized Medicine and Improved Patient Outcomes—Insights from the Syrian Healthcare Sector. Applied Science and Biotechnology Journal for Advanced Research, 4(3), 28–47. https://doi.org/10.5281/zenodo.15621789

Issue

Section

Articles

ARK